Abstract:
A multilayer component and fabrication process are disclosed. The multilayer component includes a foil surface layer abutting the bond coat layer and a channel-forming material positioned between the foil surface layer and a substrate. The channel-forming material defines at least a portion of a channel. The channel can be at least partially defined by a channel-forming material brazed with a foil surface layer to a substrate of the multilayer component. The process includes applying one or more layers to a foil surface layer and applying a channel-forming material to at least partially define a channel between the foil surface layer and a substrate.
Abstract:
A method of welding using a weld filler additive and a weld filler additive are provided. The method includes the step of welding the component with a filler additive comprising a sufficient amount of each of Co, Cr, Al, Ti, Mo, Fe, B, C, Nb, and Ni, the component including a hard-to-weld base alloy. The method further includes the step of forming an easy-to-weld target alloy on a surface of the component from the welding.
Abstract:
A method for treating a component and a treated component are provided. The method includes the steps of machining a tapered slot in the component. The tapered slot is measured to determine dimensions. An insert is formed to have a corresponding geometry to the tapered slot with a braze gap between an outer surface of the insert and an inner surface of the tapered slot. A layer of a braze material is deposited on the outer surface of the insert, where a thickness of the layer corresponds to the braze gap. The layer of the braze material on the outer surface of the insert is sintered to fabricate a diffusion layer. The insert is positioned into the tapered slot. The diffusion layer is brazed to join the insert to the taper slot. The treated component includes a surface having a tapered slot, an insert, and a braze joint.
Abstract:
A method for treating a component and a heterogeneous composition are provided. The method includes the steps of brazing the component with a heterogeneous composition. The heterogeneous composition includes a braze material and a ceramic additive. The braze material and the ceramic additive are intermixed with one another as distinct phases. The heterogeneous composition may include, but not be limited to, a braze material and a silicon carbide. The braze material includes a braze filler. The silicon carbide has a configuration including, but not limited to, fibers, powders, and combinations thereof.
Abstract:
A method includes heating a brazing material in a braze chamber of a first component to a braze temperature to melt the brazing material. The brazing material flows from the braze chamber, through at least one internal channel of the first component, and into a braze gap between the first component and a second component to braze the first component to the second component. A brazed article includes a first component having a braze chamber and at least one internal channel extending from the braze chamber to an external surface, a second component having at least one braze surface separated from the external surface of the first component by a braze gap, and a braze material in the braze gap. A braze assembly includes a first component, a second component, and a brazing material in the braze chamber.
Abstract:
A hybrid article is disclosed including a coating disposed on and circumscribing the lateral surface of a core having a core material. The coating includes about 35% to about 95% of a first metallic material having a first melting point, and about 5% to about 65% of a second metallic material having a second melting point lower than the first melting point. The coating is sinter-bonded to the core. A method for forming the hybrid article is disclosed including disposing the core in a die, introducing a slurry having the metallic materials into a gap between the lateral surface and the die, and sintering the slurry, forming the coating. A method for closing an aperture of an article is disclosed including inserting the hybrid article into the aperture, and brazing the hybrid article to the article, welding the aperture with the hybrid article serving as weld filler, or both.
Abstract:
An article and a component are provided. The article includes a base portion arranged and disposed to be positioned within a component, and an arrangement of apertures formed in the base portion, each of the apertures extending through the base portion. The arrangement of apertures is arranged and disposed to provide shadowless cooling of an inner surface of the component. The component includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, and an article positioned within the inner region, the article comprising a base portion and an arrangement of apertures formed in the base portion, each of the apertures extending through the base portion. The arrangement of apertures is arranged and disposed to provide shadowless cooling of the inner surface of the body portion. Also provided is a method of cooling a component including an article positioned therein.
Abstract:
A fabricated article includes a substrate and one or more turbulators formed on the substrate. Each of the one or more turbulators includes at least one root portion providing a concave transition between the substrate and the turbulator. In some embodiments, the fabricated article is formed by a turbulator fabrication process. The turbulator fabrication process includes concurrently directing the first fusion energy toward a first side of the turbulator material extending from the substrate and the second fusion energy toward a second side of the turbulator material opposite the first side and extending from the substrate. The directing of the first fusion energy and the second fusion energy shapes the first side of the turbulator material to have a first contour and the second side of the turbulator material to have a second contour, thereby forming the one or more turbulators on the substrate.
Abstract:
A rotating component for a turbomachine including a body having an outer surface, at least one groove formed in the outer surface, and a strip of material at least partially inserted into and overlying the groove. The strip of material is thermally bonded to the body overlying the groove to form a passageway. The strip of material having a finished outer surface opposite the groove is substantially coincident with the corresponding outer surface of the body prior to formation of the groove.
Abstract:
A weld repair for repairing an imperfection in a nickel base superalloy article. The weld repair provides a weldment that includes a weld joint, a heat affected zone adjacent to the weld joint and a nickel base alloy base material adjacent to the heat affected zone and opposite the weld joint. The weld joint utilizes a nickel base weld filler material, having a composition, in weight percent of 0.03-0.13% C, 22.0-23.0% Cr, 18.5-19.5% Co, 1.8-2.2% W, 0.7-1.4% Nb, 2.2-2.4% Ti, 1.3-2.0% Al, 0.005-0.040% Zr, 0.002-0.008% B, up to 0.15% Mo, up to 0.35% Fe, up to 0.10% Mn, up to 0.10% Cu, up to 0.10% V, up to 0.15% Hf, up to 0.25% Si, and the balance Ni and incidental impurities. The weld filler material is characterized by an absence of Ta.