Abstract:
A vehicle propulsion system includes an engine and a first electric machine each configured to selectively provide torque to propel the vehicle. A second electric machine is coupled to the engine to provide torque to start the engine from an inactive state. A high-voltage power source is configured to power both of the first electric machine and the second electric machine over a high-voltage bus. A propulsion controller is programmed to start the engine using cranking torque output from the second electric machine powered by the high-voltage power source. The controller is also programmed to operate both of the first electric machine and the combustion engine to propel the vehicle in response to an acceleration demand greater than a threshold. The controller is further programmed to decouple the engine and propel the vehicle using the first electric machine in response to vehicle speed less than a speed threshold.
Abstract:
A powertrain includes an engine with a crankshaft rotating on a first axis, motor/generator unit (MGU), belted drive system, transmission, actuator assembly, and controller. An MGU rotor shaft rotates about a second axis. The belted drive assembly has a first pulley connected to the crankshaft, a second pulley selectively connected to the rotor shaft, and an endless rotatable drive element that connects the pulleys. The transmission is connected to the flywheel via an input clutch. The actuator assembly has a third axis parallel to the first and second axes, a linear actuator(s), pinion gears translatable along the third axis to selectively engage the first and second gear elements, and overrunning clutches to passively disengage the pinion gears from the first or second gear element. The controller transmits control signals to the MGU and linear actuators to command a control state via translation of the pinion gears.
Abstract:
A rechargeable energy storage system includes a housing including an interior zone, a coolant member arranged in the interior zone of the housing, and a plurality of energy storage cells arranged in the interior zone on the coolant member. Each of the plurality of energy storage cells includes a cell can defining an energy storage medium housing. The cell can includes a first end supported at the coolant member and a second end. An amount of energy storage medium is arranged in the energy storage medium housing. A heat absorption member extends from the first end toward the second end through the amount of energy storage medium.
Abstract:
A power control system for a battery system of a vehicle includes a first contactor, a second contactor, N fuses and N vehicle loads. An active sacrificial protection device includes a third contactor and a first fuse. The active sacrificial protection device is connected to a positive or negative terminal of the battery system. A current sensor is configured to sense a measured load current flowing through one of the first contactor and the second contactor. A battery management module is configured to selectively close the third contactor to reduce current flowing through one of the first contactor or the second contactor and selectively open the one of the first contactor or the second contactor after closing the third contactor.
Abstract:
An apparatus for charging an electric vehicle includes a plug command center having data identifying an availability of an amount of energy which is available for transfer from a first battery system of a first battery electric vehicle (BEV) to a second BEV. A charging adapter provides for energy transfer between a first plug of the first BEV and a second plug of the second BEV. A V2V charging controller communicates data identifying a battery system charge state of the first BEV and a battery system charge state of the second BEV and selects between multiple available charging options.
Abstract:
A system for use with a direct current fast-charging (DCFC) station includes a controller and battery system. The battery system includes first and second battery packs, and first, second, and third switches. The switches have ON/OFF conductive states commanded by the controller to connect the battery packs in a parallel-connected (P-connected) or series-connected (S-connected) configuration. An electric powertrain with one or more electric machines is powered via the battery system. First and second charge ports of the system are connectable to the station via a corresponding charging cable. The first charge port receives a low or high charging voltage from the station. The second charge port receives a low charging voltage. When the station can supply the high charging voltage to the first charge port, the controller establishes the S-connected configuration via the switches, and thereafter charges the battery system solely via the first charge port.
Abstract:
A vehicle powertrain includes a first power-source configured to generate a first power-source torque and a multiple speed-ratio transmission configured to transmit the first power-source torque to power the vehicle. The powertrain also includes a fluid coupling having a fluid pump shaft operatively connected to the first power-source and a turbine shaft operatively connected to the multi-speed transmission. The fluid coupling is configured to multiply the first power-source torque, and transfer the multiplied first power-source torque to the multiple speed-ratio transmission. The powertrain additionally includes a second power-source configured to generate a second power-source torque and a first torque transfer system configured to connect the second power-source to the first power-source. The powertrain further includes a second torque transfer system configured to connect the second power-source to the multi-speed transmission. A motor vehicle having such a powertrain is also envisioned.
Abstract:
A hybrid electric powertrain system includes a transmission, engine, e-accessory, primary and secondary electric machines, and controller. The e-accessory is powered by the secondary electric machine in response to an accessory torque demand. The engine and primary electric machine are connected to the transmission and configured, alone or in combination, to provide input drive torque to the transmission. The secondary electric machine is connected to the e-accessory and satisfies the accessory torque demand. A first clutch between the secondary electric machine and a transmission input member connects the secondary electric machine to the input member. The controller, in response to an output torque request, executes a power-sharing strategy using an objective cost function that allocates engine torque, primary motor torque, and secondary motor torque to the input member to satisfy the output torque request, while satisfying the accessory torque demand via the secondary electric machine.
Abstract:
An electrical system includes an engine, a motor-generator and a starter mechanism, and engine systems also include the engine. The electrical system includes a first energy storage device having a first voltage level and a second energy storage device having a second voltage level less than the first voltage level. The electrical system further includes a controller configured to control the motor-generator, the starter mechanism and first and second switching devices. Current from at least one of the first and second energy storage devices is delivered to the motor-generator when at least one of the first switching device is in a first closed state and the second switching device is in a second closed state such that the motor-generator transfers torque to the starter mechanism and the starter mechanism uses the torque to start the engine.
Abstract:
A powertrain includes a motor-generator and an auxiliary electric system. The powertrain also includes a first energy storage device disposed in a parallel electrical relationship with a motor-generator and an auxiliary electric system. Additionally, the powertrain includes a first switching device selectively transitionable between a first open state to electrically disconnect the first energy storage device from at least one of the motor-generator and the auxiliary electric system, and a first closed state to electrically connect the first energy storage device to at least one of the motor-generator and the auxiliary electric system. The motor-generator and the auxiliary electric system are operable regardless of the first switching device being in the first open and closed states.