Abstract:
A sensor device includes a current conductor designed to carry a measurement current, and a magnetic field sensor chip having a sensor element, wherein the magnetic field sensor chip is designed to detect a magnetic field at the location of the sensor element. The sensor device furthermore includes an encapsulation material, wherein the magnetic field sensor chip is encapsulated by the encapsulation material, and a soft magnet secured to the encapsulation material and designed to concentrate the magnetic field at the location of the sensor element. The magnetic field sensor chip and the soft magnet are galvanically isolated from one another by the encapsulation material.
Abstract:
A sensor package including a metal carrier and a sensor chip arranged on the metal carrier and having a first sensor element. In an orthogonal projection of the sensor chip onto a surface of the metal carrier, at least two edge sections of the sensor chip are free of overlap with the surface of the metal carrier. The sensor chip is designed to detect a magnetic field induced by an electric current flowing through a current conductor.
Abstract:
A sensor package including a metal carrier and a sensor chip arranged on the metal carrier and having a first sensor element. In an orthogonal projection of the sensor chip onto a surface of the metal carrier, at least two edge sections of the sensor chip are free of overlap with the surface of the metal carrier. The sensor chip is designed to detect a magnetic field induced by an electric current flowing through a current conductor.
Abstract:
A current sensor package, comprises a current path and a sensing device. The sensing device is spaced from the current path, and the sensing device is configured for sensing a magnetic field generated by a current flowing through the current path. Further, the sensing device comprises a sensor element. The sensing device is electrically connected to a conductive trace. An encapsulant extends continuously between the current path and the sensing device.
Abstract:
A package and method of manufacturing a package is disclosed. In one example, the package includes a carrier having an accommodation through hole. A component is arranged at least partially within the accommodation through hole. A connection structure connects the carrier with the component.
Abstract:
A current sensor package, comprises a current path and a sensing device. The sensing device is spaced from the current path, and the sensing device is configured for sensing a magnetic field generated by a current flowing through the current path. Further, the sensing device comprises a sensor element. The sensing device is electrically connected to a conductive trace. An encapsulant extends continuously between the current path and the sensing device.
Abstract:
A semiconductor device includes a substrate, a semiconductor die, and an antistatic die attach material between the substrate and the semiconductor die. The antistatic die attach material includes a mixture of a nonconductive adhesive material and carbon black or graphite. In one example, the antistatic die attach material has a resistivity between 101 Ω·cm and 1010 Ω·cm.
Abstract:
A package and method of manufacturing a package is disclosed. In one example, the package includes a carrier having an accommodation through hole. A component is arranged at least partially within the accommodation through hole. A connection structure connects the carrier with the component.
Abstract:
In one embodiment, a method of forming a current sensor device includes forming a device region comprising a magnetic sensor within and/or over a semiconductor substrate. The device region is formed adjacent a front side of the semiconductor substrate. The back side of the semiconductor substrate is attached over an insulating substrate, where the back side is opposite the front side. Sidewalls of the semiconductor substrate are exposed by dicing the semiconductor substrate from the front side without completely dicing the insulating substrate. An isolation liner is formed over all of the exposed sidewalls of the semiconductor substrate. The isolation liner and the insulating substrate include a different material. The method further includes separating the insulating substrate to form diced chips, removing at least a portion of the isolation liner from over a top surface of the device region, and forming contacts over the top surface of the device region.
Abstract:
A semiconductor device package includes a leadframe and a semiconductor chip mounted to the leadframe. The semiconductor device package further includes a molded encapsulant configured to cast-in-place the leadframe. A surface area of the leadframe remains exposed by the encapsulant. An electrically insulating covering layer extends over a part of the surface area and is configured to divide the surface area in at least two zones.