Abstract:
Methods of fabricating semiconductor devices are provided including performing two photolithography processes and two spacer processes such that patterns are formed to have a pitch that is smaller than a limitation of photolithography process. Furthermore, line and pad portions are simultaneously defined by performing the photolithography process once and, thus, there is no necessity to perform an additional photolithography process for forming the pad portion. Related devices are also provided.
Abstract:
Embodiments of a semiconductor device including a resistor and a method of fabricating the same are provided. The semiconductor device includes a mold pattern disposed on a semiconductor substrate to define a trench, a resistance pattern including a body region and first and second contact regions, wherein the body region covers the bottom and sidewalls of the trench, the first and second contact regions extend from the extending from the body region over upper surfaces of the mold pattern, respectively; and first and second lines contacting the first and second contact regions, respectively.
Abstract:
Non-volatile memory devices and methods of manufacturing the same are disclosed. In a non-volatile memory device, widths of a metal gate and an upper portion of a base gate in a gate electrode are less than the width of a hard mask pattern disposed on the metal gate. First and second protection spacers are disposed on opposing sidewalls of the metal gate and on opposing sidewalls of the upper portion of the base gate, respectively.
Abstract:
Provided is a method of forming patterns for a semiconductor device in which fine patterns and large-width patterns are formed simultaneously and adjacent to each other. In the method, a first layer is formed on a substrate so as to cover a first region and a second region which are included in the substrate. Both a blocking pattern covering a portion of the first layer in the first region and a low-density large-width pattern covering a portion of the first layer in the second region are simultaneously formed. A plurality of sacrificial mask patterns are formed on the first layer and the blocking pattern in the first region. A plurality of spacers covering exposed sidewalls of the plurality of sacrificial mask patterns are formed. The plurality of sacrificial mask patterns are removed. The first layer in the first and second regions are simultaneously etched by using the plurality of spacers and the blocking pattern as etch masks in the first region and using the low-density large-width pattern as an etch mask in the second region.
Abstract:
A semiconductor device having a dual trench and methods of fabricating the same, a semiconductor module, an electronic circuit board, and an electronic system are provided. The semiconductor device includes a semiconductor substrate having a cell region including a cell trench and a peripheral region including a peripheral trench. The cell trench is filled with a core insulating material layer, and the peripheral trench is filled with a padding insulating material layer conformably formed on an inner surface thereof and a core insulating material layer formed on an inner surface of the padding insulating material layer. The core insulating material layer has a greater fluidity than the padding insulating material layer.
Abstract:
A method of manufacturing a semiconductor device includes forming a plurality of preliminary gate structures, forming a capping layer pattern on sidewalls of the plurality of preliminary gate structures, and forming a blocking layer on top surfaces of the plurality of preliminary gate structures and the capping layer pattern such that a void is formed therebetween. The method also includes removing the blocking layer and an upper portion of the capping layer pattern such that at least the upper sidewalls of the plurality of preliminary gate structures are exposed, and a lower portion of the capping layer pattern remains on lower sidewalls of the preliminary gate structures. The method further includes forming a conductive layer on at least the upper sidewalls of the plurality of preliminary gate structures, reacting the conductive layer with the preliminary gate structures, and forming an insulation layer having an air gap therein.
Abstract:
In a non-volatile memory device and method of manufacturing the same, a device isolation pattern and an active region extend in a first direction on a substrate. A first dielectric pattern is formed on the active region of the substrate. Conductive stack structures are arranged on the first dielectric pattern and a recess is formed between a pair of the adjacent conductive stack structures. A protection layer is formed on a sidewall of the stack structure to protect the sidewall of the stack structure from over-etching along the first direction. The protection layer includes an etch-proof layer having oxide and arranged on a sidewall of the floating gate electrode and a sidewall of the control gate line and a spacer layer covering the sidewall of the conductive stack structures.
Abstract:
A semiconductor device having a dual trench and methods of fabricating the same, a semiconductor module, an electronic circuit board, and an electronic system are provided. The semiconductor device includes a semiconductor substrate having a cell region including a cell trench and a peripheral region including a peripheral trench. The cell trench is filled with a core insulating material layer, and the peripheral trench is filled with a padding insulating material layer conformably formed on an inner surface thereof and a core insulating material layer formed on an inner surface of the padding insulating material layer. The core insulating material layer has a greater fluidity than the padding insulating material layer.
Abstract:
A semiconductor device having a dual trench and methods of fabricating the same, a semiconductor module, an electronic circuit board, and an electronic system are provided. The semiconductor device includes a semiconductor substrate having a cell region including a cell trench and a peripheral region including a peripheral trench. The cell trench is filled with a core insulating material layer, and the peripheral trench is filled with a padding insulating material layer conformably formed on an inner surface thereof and a core insulating material layer formed on an inner surface of the padding insulating material layer. The core insulating material layer has a greater fluidity than the padding insulating material layer.
Abstract:
A semiconductor device includes a semiconductor substrate including a cell region and a core region adjacent to the cell region, active regions in the cell region and the core region, an interlayer insulating layer covering the active regions, upper cell contacts penetrating the interlayer insulating layer in the cell region, the upper cell contacts being adjacent to each other along a first direction and being electrically connected to the active regions, and core contacts penetrating the interlayer insulating layer in the active regions of the core region, the core contacts being adjacent to each other along the first direction and including upper connection core contacts electrically connected to the active regions, and dummy contacts adjacent to the upper connection core contacts, the dummy contacts being insulated from the active regions.