Abstract:
A method of fabricating an integrated circuit device includes forming first and second mask structures on respective first and second regions of a feature layer. Each of the first and second mask structures includes a dual mask pattern and an etch mask pattern thereon having an etch selectivity relative to the dual mask pattern. The etch mask patterns of the first and second mask structures are isotropically etched to remove the etch mask pattern from the first mask structure while maintaining at least a portion of the etch mask pattern on the second mask structure. Spacers are formed on opposing sidewalls of the first and second mask structures. The first mask structure is selectively removed from between the spacers in the first region using the portion of the etch mask pattern on the second mask structure as a mask to define a first mask pattern including the opposing sidewall spacers with a void therebetween in the first region, and a second mask pattern including the opposing sidewall spacers with the second mask structure therebetween in the second region. The feature layer may be patterned using the first mask pattern as a mask to define a first feature on the first region, and using the second mask pattern as a mask to define a second feature on the second region having a greater width than the first feature.
Abstract:
A method of forming a non-volatile memory device includes forming first mask patterns, which can have relatively large distances therebetween. A distance regulating layer is formed that conformally covers the first mask patterns. Second mask patterns are formed in grooves on the distance regulating layer between the first mask patterns.
Abstract:
Methods of forming a semiconductor device include forming a mask layer on a semiconductor substrate. The mask layer has vertically and horizontally extending portions. The vertically extending portions have a thickness selected to provide a desired line width to an underlying structure to be formed using the mask layer and a height greater than a height of the horizontally extending portions. The underlying structure is formed using the mask layer.
Abstract:
The inventive concepts provide methods for fabricating a semiconductor device and semiconductor devices fabricated by the same. According to the method, conductive lines having a fine pitch smaller than the minimum pitch realized by an exposure process may be formed using two or three photolithography processes and two spacer formation processes. In addition, node separation regions of the conductive lines may be easily formed without a misalignment problem.
Abstract:
Non-volatile memory devices and methods of manufacturing the same are disclosed. In a non-volatile memory device, widths of a metal gate and an upper portion of a base gate in a gate electrode are less than the width of a hard mask pattern disposed on the metal gate. First and second protection spacers are disposed on opposing sidewalls of the metal gate and on opposing sidewalls of the upper portion of the base gate, respectively.
Abstract:
Provided is a method of forming patterns for a semiconductor device in which fine patterns and large-width patterns are formed simultaneously and adjacent to each other. In the method, a first layer is formed on a substrate so as to cover a first region and a second region which are included in the substrate. Both a blocking pattern covering a portion of the first layer in the first region and a low-density large-width pattern covering a portion of the first layer in the second region are simultaneously formed. A plurality of sacrificial mask patterns are formed on the first layer and the blocking pattern in the first region. A plurality of spacers covering exposed sidewalls of the plurality of sacrificial mask patterns are formed. The plurality of sacrificial mask patterns are removed. The first layer in the first and second regions are simultaneously etched by using the plurality of spacers and the blocking pattern as etch masks in the first region and using the low-density large-width pattern as an etch mask in the second region.
Abstract:
A semiconductor device having a dual trench and methods of fabricating the same, a semiconductor module, an electronic circuit board, and an electronic system are provided. The semiconductor device includes a semiconductor substrate having a cell region including a cell trench and a peripheral region including a peripheral trench. The cell trench is filled with a core insulating material layer, and the peripheral trench is filled with a padding insulating material layer conformably formed on an inner surface thereof and a core insulating material layer formed on an inner surface of the padding insulating material layer. The core insulating material layer has a greater fluidity than the padding insulating material layer.
Abstract:
A method of manufacturing a semiconductor device includes forming a plurality of preliminary gate structures, forming a capping layer pattern on sidewalls of the plurality of preliminary gate structures, and forming a blocking layer on top surfaces of the plurality of preliminary gate structures and the capping layer pattern such that a void is formed therebetween. The method also includes removing the blocking layer and an upper portion of the capping layer pattern such that at least the upper sidewalls of the plurality of preliminary gate structures are exposed, and a lower portion of the capping layer pattern remains on lower sidewalls of the preliminary gate structures. The method further includes forming a conductive layer on at least the upper sidewalls of the plurality of preliminary gate structures, reacting the conductive layer with the preliminary gate structures, and forming an insulation layer having an air gap therein.
Abstract:
In a non-volatile memory device and method of manufacturing the same, a device isolation pattern and an active region extend in a first direction on a substrate. A first dielectric pattern is formed on the active region of the substrate. Conductive stack structures are arranged on the first dielectric pattern and a recess is formed between a pair of the adjacent conductive stack structures. A protection layer is formed on a sidewall of the stack structure to protect the sidewall of the stack structure from over-etching along the first direction. The protection layer includes an etch-proof layer having oxide and arranged on a sidewall of the floating gate electrode and a sidewall of the control gate line and a spacer layer covering the sidewall of the conductive stack structures.
Abstract:
A semiconductor device having a dual trench and methods of fabricating the same, a semiconductor module, an electronic circuit board, and an electronic system are provided. The semiconductor device includes a semiconductor substrate having a cell region including a cell trench and a peripheral region including a peripheral trench. The cell trench is filled with a core insulating material layer, and the peripheral trench is filled with a padding insulating material layer conformably formed on an inner surface thereof and a core insulating material layer formed on an inner surface of the padding insulating material layer. The core insulating material layer has a greater fluidity than the padding insulating material layer.