摘要:
A growth apparatus is used having a plurality of crucibles each for containing the solution, a heating element for heating the crucible, and a pressure vessel for containing at least the crucibles and the heating element and for filling an atmosphere comprising at least nitrogen gas. One seed crystal is put in each of the crucibles to grow the nitride single crystal on the seed crystal.
摘要:
An object of the present invention is to realize, by the flux process, the production of a high-quality n-type semiconductor crystal having high concentration of electrons. The method of the invention for producing an n-type Group III nitride-based compound semiconductor by the flux process, the method including preparing a melt by melting at least a Group III element by use of a flux; supplying a nitrogen-containing gas to the melt; and growing an n-type Group III nitride-based compound semiconductor crystal on a seed crystal from the melt. In the method, carbon and germanium are dissolved in the melt, and germanium is incorporated as a donor into the semiconductor crystal, to thereby produce an n-type semiconductor crystal.The mole percentage of germanium to gallium in the melt is 0.05 mol % to 0.5 mol %, and the mole percentage of carbon to sodium is 0.1 mol % to 3.0 mol %.
摘要:
A raw material mixture containing an easily oxidizable material is weighed. The raw material mixture is melted and then solidified within a reaction vessel 1 set in a non-oxidizing atmosphere to thereby produce a solidified matter 19. The reaction vessel 1 and the solidified matter 19 are heated in a non-oxidizing atmosphere within a crystal growth apparatus to melt the solidified matter to thereby produce a solution. A single crystal is grown from the solution.
摘要:
In the production of GaN through the flux method, deposition of miscellaneous crystals on the nitrogen-face of a GaN self-standing substrate and waste of raw materials are prevented. Four arrangements of crucibles and a GaN self-standing substrate are exemplified. In FIG. 1A, a nitrogen-face of a self-standing substrate comes into close contact with a sloped flat inner wall of a crucible. In FIG. 1B, a nitrogen-face of a self-standing substrate comes into close contact with a horizontally facing flat inner wall of a crucible, and the substrate is fixed by means of a jig. In FIG. 1C, a jig is provided on a flat bottom of a crucible, and two GaN self-standing substrates are fixed by means of the jig so that the nitrogen-faces of the substrates come into close contact with each other. In FIG. 1D, a jig is provided on a flat bottom of a crucible, and a GaN self-standing substrate is fixed on the jig so that the nitrogen-face of the substrate is covered with the jig. A flux mixture of molten gallium and sodium is charged into each crucible, and a GaN single crystal is grown on a gallium-face under pressurized nitrogen.
摘要:
A plurality of seed crystal films of a single crystal of a nitride of a metal belonging to group III are formed on a substrate, while a non-growth surface not covered with the seed crystal films is formed on the substrate. A single crystal of a nitride of a metal belonging to group III is grown on the seed crystal film. A plurality of the seed crystal films are separated by the non-growth surface and arranged in at least two directions X and Y. The maximum inscribed circle diameter “A” of the seed crystal film is 50 μm or more and 6 mm or less, a circumscribed circle diameter “B” of the seed crystal film is 50 μm or more and 10 mm or less, and the maximum inscribed circle diameter “C” of the non-growth surface 1b is 100 μm or more and 1 mm or less.
摘要:
A method of growing hexagonal boron nitride single crystal is provided. Hexagonal boron nitride single crystal is grown in calcium nitride flux by heating, or heating and then slowly cooling, boron nitride and a calcium series material in an atmosphere containing nitrogen. Bulk hexagonal boron nitride single crystal can thereby successfully be grown.
摘要:
A nitride single crystal is produced on a seed crystal substrate 5 in a melt containing a flux and a raw material of the single crystal in a growing vessel 1. The melt 2 in the growing vessel 1 has temperature gradient in a horizontal direction. In growing a nitride single crystal by flux method, adhesion of inferior crystals onto the single crystal is prevented and the film thickness of the single crystal is made constant.
摘要:
To provide a semiconductor substrate of high quality suitable for fabricating an electronic device or an optical device. The present invention provides a method for producing a semiconductor substrate for an electronic device or an optical device, the method including reacting nitrogen (N) with gallium (Ga), aluminum (Al), or indium (In), which are group III elements, in a flux mixture containing a plurality of metal elements selected from among alkali metals and alkaline earth metals, to thereby grow a group III nitride based compound semiconductor crystal. The group III nitride based compound semiconductor crystal is grown while the flux mixture and the group III element are mixed under stirring. At least a portion of a base substrate on which the group III nitride based compound semiconductor crystal is grown is formed of a flux-soluble material, and the flux-soluble material is dissolved in the flux mixture, at a temperature near the growth temperature of the group III nitride based compound semiconductor crystal, during the course of growth of the semiconductor crystal or after completion of growth of the semiconductor crystal.
摘要:
A raw material mixture containing an easily oxidizable material is weighed. The raw material mixture is melted and then solidified within a reaction vessel 1 set in a non-oxidizing atmosphere to thereby produce a solidified matter 19. The reaction vessel 1 and the solidified matter 19 are heated in a non-oxidizing atmosphere within a crystal growth apparatus to melt the solidified matter to thereby produce a solution. A single crystal is grown from the solution.
摘要:
An object of the invention is to carry out the flux method with improved work efficiency while maintaining the purity of flux at high level and saving flux material cost. The sodium-purifying apparatus includes a sodium-holding-and-management apparatus for maintaining purified sodium (Na) in a liquid state. Liquid sodium is supplied into a sodium-holding-and-management apparatus through a liquid-sodium supply piping maintained at 100° C. to 200° C. The sodium-holding-and-management apparatus further has an argon-gas-purifying apparatus for controlling the condition of argon (Ar) gas that fills the internal space thereof. Thus, by opening and closing a faucet at desired timing, purified liquid sodium (Na) supplied from the sodium-purifying apparatus can be introduced into a crucible as appropriate via the liquid-sodium supply piping, the sodium-holding-and-management apparatus, and the piping.