摘要:
The present invention relates to a method for forming a silicon oxide film on a substrate by the thermal chemical vapor deposition method (thermal CVD method) using a gas mixture of ozone (O.sub.3) and tetraethoxyorthosilicate (TEOS). It is an object of the present invention to provide a method for forming an insulating film in a semiconductor device, in which anomalous deposition of the film at a step portion (a portion of difference in level) is prevented and the film contains less moisture and less organic matter and is superior in smoothness. The present invention includes the steps of exposing the depositing surface of the substrate 14 to tetraethoxyorthosilicate in the absence of oxygen and ozone at the elevated temperature and forming an oxide film 15 on the substrate 14 by the thermal CVD method using a gas mixture of ozone (O.sub.3) and tetraethoxyorthosilicate at a deposition temperature. In a second embodiment HMDS is substituted for TEOS in the pretreatment step.
摘要:
The plastic mold decapsuling apparatus comprises an etchant bottle; a heat tank; an etchant reservoir disposed in the heat tank; at least one decapsuling plastic mold holder; a first etchant feeding pump for selectively circulating the etchant from the etchant bottle to the etchant reservoir and discharging waste etchant; and a second etchant feeding pump for feeding the etchant from the reservoir to the plastic mold holder. Since the etchant bottle can be set as it is without transferring the etchant into another vessel, the etchant handling work is safe. Since a required amount of etchant can previously be heated in a reservoir within the heat tank, it is possible to continuously supply a predetermined amount of etchant heated to a constant temperature, thus improving the speed of decapsuling work. Futher, since the etchant is circulated through the decapsuling plastic mold holder, it is possible to firmly decapsule plastic mold devices by use of a relatively mild etchant such as fuming nitric acid.
摘要:
A first p-type SiGe mixed crystal layer is formed by an epitaxial growth method in a trench, and a second p-type SiGe mixed crystal layer is formed. On the second SiGe mixed crystal layer, a third p-type SiGe mixed crystal layer is formed. The height of an uppermost surface of the first SiGe mixed crystal layer from the bottom of the trench is lower than the depth of the trench with the surface of the silicon substrate being the standard. The height of an uppermost surface of the second SiGe mixed crystal layer from the bottom of the trench is higher than the depth of the trench with the surface of the silicon substrate being the standard. Ge concentrations in the first and third SiGe mixed crystal layers are lower than a Ge concentration in the second SiGe mixed crystal layer.
摘要:
A semiconductor device including an n-channel MISFET including source/drain regions 38 formed in a semiconductor substrate 10 with a channel region between them, and a gate electrode 44 of a metal silicide formed over the channel region with a gate insulating film 12 interposed therebetween; and an insulating film 46 formed over the gate electrode 44 from side walls of the gate electrode 44 to an upper surface of the gate electrode 44, having a tensile stress from 1.0 to 2.0 GPa and applying the tensile stress to the channel region.
摘要:
In a semiconductor device having a Low-k film as an interlayer insulator, peeling of the interlayer insulator in a thermal cycle test is prevented, thereby providing a highly reliable semiconductor device. In a semiconductor device having a structure in which interlayer insulators in which buried wires each having a main electric conductive layer made of copper are formed and cap insulators of the buried wires are stacked, the cap insulator having a relatively high Young's modulus and contacting by its upper surface with the interlayer insulator made of a Low-k film having a relatively low Young's modulus is formed so as not to be provided in an edge portion of the semiconductor device.
摘要:
A semiconductor device includes an NMOS transistor and a PMOS transistor. The NMOS transistor includes a channel area formed in a silicon substrate, a gate electrode formed on a gate insulating film in correspondence with the channel area, and a source area and a drain area formed in the silicon substrate having the channel area situated therebetween. The PMOS transistor includes another channel area formed in the silicon substrate, another gate electrode formed on another gate insulating film in correspondence with the other channel area, and another source area and another drain area formed in the silicon substrate having the other channel area situated therebetween. The gate electrode has first sidewall insulating films. The other gate electrode has second sidewall insulating films. The distance between the second sidewall insulating films and the silicon substrate is greater than the distance between the first sidewall insulating films and the silicon substrate.
摘要:
A method of fabricating a semiconductor device is disclosed that is able to suppress a short channel effect and improve carrier mobility. In the method, trenches are formed in a silicon substrate corresponding to a source region and a drain region. When epitaxially growing p-type semiconductor mixed crystal layers to fill up the trenches, the surfaces of the trenches are demarcated by facets, and extended portions of the semiconductor mixed crystal layers are formed between bottom surfaces of second side wall insulating films and a surface of the silicon substrate, and extended portion are in contact with a source extension region and a drain extension region.
摘要:
The invention provides a load sensor which is driven by a low electric power consumption, can measure at a high precision, and has a high reliability without being broken. The load sensor is structured such that a detection rod for detecting a strain is provided in an inner portion of a hole formed near a center of a pin via a shock relaxation material and a semiconductor strain sensor is provided in the detection rod, in a load sensor detecting a load applied to the pin from a strain generated in an inner portion of the pin.
摘要:
A mechanical quantity measuring apparatus is provided which can make highly precise measurements and is not easily affected by noise even when it is supplied an electricity through electromagnetic induction or microwaves. At least a strain sensor and an amplifier, an analog/digital converter, a rectification/detection/modulation-demodulation circuit, and a communication control circuit are formed in one and the same silicon substrate. Or, the silicon substrate is also formed at its surface with a dummy resistor which has its longitudinal direction set in a particular crystal orientation and which, together with the strain sensor, forms a Wheatstone bridge. With this arrangement, even when a current flowing through the sensor is reduced, measured data is prevented from being buried in noise, allowing the sensor to operate on a small power and to measure a mechanical quantity with high precision even when it is supplied electricity through electromagnetic induction or microwaves.
摘要:
The method of manufacturing a semiconductor device has the steps of: etching a semiconductor substrate to form an isolation trench by using as a mask a pattern including a first silicon nitride film and having a window; depositing a second silicon nitride film covering an inner surface of the isolation trench; forming a first silicon oxide film burying the isolation trench; etching and removing the first silicon oxide film in an upper region of the isolation trench; etching and removing the exposed second silicon nitride film; chemical-mechanical-polishing the second silicon oxide film; and etching and removing the exposed first silicon nitride film.