Abstract:
A method for determining a slippage value that shows a slippage condition between two components that transmit torque through frictional engagement, in particular such components that are contained in the power train of a motor vehicle. The effect on the difference in rotational speed between the components of a change in an excitation that influences the slippage condition is analyzed, and the slippage value is determined therefrom. A non-uniformity of rotation of at least one of the components is utilized as the excitation.
Abstract:
A method and a system for reducing a jerk produced by the range shift of a transmission with a power division arrangement. The transmission includes a variable speed drive in the form of a continuously variable transmission, and a pair of planetary gear sets and a pair of shift clutches to enable power to be divided between two branches within the transmission. During a range shift between two operating ranges the variable speed drive is acted upon by a short-term transmission ratio adjustment impulse in such a way that a cancellation jerk caused thereby the adjustment impulse weakens the jerk caused by the range shift.
Abstract:
A method and apparatus for controlling a motor vehicle drive train component. The motor vehicle includes an engine control device and a clutch control device. The method and apparatus control the clutch control device and the engine control device so that they do not simultaneously control or regulate the same operating parameter of the drive train.
Abstract:
The present invention presents a method for operating a motor vehicle which has at least one clutch device. The method includes determining at least one part of a dependence of a path of at least one clutch characteristic on at least one pressure value. The pressure value relates to a pressure of a hydraulic fluid at a predetermined site. According to one embodiment of the present invention, the hydraulic pressure is detected in an area of a torque sensor which produces the hydraulic pressure dependent on a size (magnitude) of an engine torque.
Abstract:
There is disclosed a system for controlling creeping movements of a motor vehicle having a power train with an automated clutch between the engine and the transmission, an electronic control unit for the clutch, and sensors which transmit to the control unit signals denoting the condition of one or more brakes, the positions of an operator-actuatable load lever for the engine, and others. Signals from the control unit are utilized to operate the clutch and, to this end, the control unit includes an arrangement for effecting a creeping movement of the vehicle when the transmission is in gear, the brake or brakes is or are idle, and the load lever is actuated. Such arrangement can effect the transmission of torque in accordance with at least one first predeterminable function to thus induce a creeping movement of the vehicle. The control unit further includes a device for effecting a starting movement of the vehicle in response to actuation of the load lever while the brake is or are idle and the transmission is in gear; such device includes an assembly for selecting the transmission of torque by the clutch in accordance with at least one second predeterminable factor.
Abstract:
A method of monitoring a torque transmission system with a manually switchable gearbox in the power train of a motor vehicle involves the utilization of at least one sensor unit at the input side of the torque transmission system to ascertain relevant positions of the shift lever of the gearbox and the driving torque of the engine of the motor vehicle. The thus obtained shift lever signals are memorized, together with comparison signals which are obtained as a result of filtering of the shift lever signals, and various characteristics of such signals are recognized and identified to indicate the intention of the operator of the vehicle regarding the switching of the gearbox. The thus obtained switching intention signals are transmitted to a controlled clutch operating system.
Abstract:
A drive train for a motor vehicle, including a drive unit having a drive shaft and a transmission having a transmission input shaft and a plurality of gears, of which at least one is used as a starting gear for the motor vehicle, and having a friction clutch, which is arranged between the crankshaft and the transmission input shaft and is actuated in an automated manner. In order to prevent start-up noise caused by backlashes in the motor vehicle, a backlash present in the transmission is compensated by applying a small compensating torque set at the friction clutch to the transmission input shaft while the starting gear is engaged before start up.
Abstract:
The clutch system relates to an automatic friction clutch with a hydrostatically actuator-controlled clutch withdrawal. In such clutch release systems, a slave cylinder pressurized by a master cylinder in an engaged state is in connection with a reservoir (tank) via a connection opening uncovered by the master cylinder piston. To determine the opening deviations and location of the connection opening, it is proposed that actuation of master cylinder be velocity-dependent and pressure patterns of the hydrostatic clutch release system be evaluated.
Abstract:
A method for adjusting the friction coefficient of a friction clutch situated in a hybrid power train between an electric machine and a combustion engine, actuated by a clutch actuator, the friction coefficient is adjusted by a torque transmitted by the friction clutch, which is determined when starting the combustion engine by the electric machine.
Abstract:
A method and apparatus for determining a motion transmission value that provides security of motion transmission between two components that transfer motion through frictional engagement. The motion transmission value provides security of motion transmission through the reaction of the motion transmitted to a change in the contact force between the components that are frictionally engaged. The contact force is modulated in a predetermined frequency range during the motion transmission, and the change in the motion transmitted during the modulation of the contact force is detected. The change in the motion transmitted is evaluated using a filtering process, and the motion transmission value is determined as the result of the evaluation.