Abstract:
A method is provided for controlling a drivetrain of a vehicle, wherein the drivetrain comprises a multi-clutch transmission. The gear shift of the multi-clutch transmission is adapted to be performed either by power cut shift or by power shift dependent on predetermined vehicle shift conditions. The method includes detecting at least one of a plurality of indications of slippery road conditions and setting a slip risk factor, wherein the slip risk factor is dependent on the indication of slippery road conditions. If the slip risk factor is above a first predetermined threshold value the method further comprises controlling the multi-clutch transmission such that an upcoming gear shift is performed as a power-shift independently of if upcoming shift was determined to be performed as a power-cut shift or as a power shift.
Abstract:
A coasting control device capable of avoiding coasting control during turning is provided. A turning recognition unit that recognizes that a vehicle is turning and a unit for prohibiting coasting control during turning that prohibits coasting control when the turning recognition unit recognizes that the vehicle is turning are provided.
Abstract:
An overspeed system for a vehicle is disclosed. The overspeed system may have a power source, a transmission unit, and a torque converter assembly operatively coupling the power source to the transmission unit. The overspeed system may also have a travel speed sensor configured to generate a signal indicative of a vehicle speed, and a controller in communication with the torque converter assembly and the travel speed sensor. The controller may be configured to prevent a decoupling of the torque converter assembly in response to the signal.
Abstract:
A method and apparatus for determining a motion transmission value that provides security of motion transmission between two components that transfer motion through frictional engagement. The motion transmission value provides security of motion transmission through the reaction of the motion transmitted to a change in the contact force between the components that are frictionally engaged. The contact force is modulated in a predetermined frequency range during the motion transmission, and the change in the motion transmitted during the modulation of the contact force is detected. The change in the motion transmitted is evaluated using a filtering process, and the motion transmission value is determined as the result of the evaluation.
Abstract:
The present invention provides a driving force distributing apparatus which can instantaneously reduce clutch pressure to thereby carry out proper operation of an ABS even if the ABS is actuated in traveling in a 4WD mode. In order to reduce pressure in a piston chamber, a control circuit drives a motor for reverse rotation. As a result, a pressure difference between a piston chamber side pressure and a pump side pressure in a supply path becomes large, pressure oil on a piston chamber side in the supply path is instantaneously discharged to an outside from a releasing hole of a quick open valve, and the pressure in the piston chamber reduces instantaneously.
Abstract:
A drive system for the transmission of power from a drive source to a plurality of output trains includes a transfer gear connected upstream of the output trains, and an arrangement for ensuring that the output trains are not overloaded with torque. The arrangement includes a safety clutch with a basic clutch body for the frictionally engaged connection of two machine parts, and at least one thin-walled sleeve which forms a wall of an annular chamber upon which pressure medium can act. The arrangement further includes at least one feed line which extends through the clutch body to the annular chamber and can be closed off in an air and fluid-tight manner by use of closure elements. The arrangement finally includes a pressure-relief mechanism. The safety clutch is arranged upstream of the transfer gear. The pressure-relief mechanism is coupled to an arrangement for detecting the torque at the output trains and/or a magnitude which is proportional to the torque and is associated with each output train, and/or an influencing quantity in the area surrounding the machine. The clutch includes a device for activating the pressure-relief mechanism when the torque and/or a magnitude proportional to the torque and/or an influencing quantity is/are exceeded.
Abstract:
The invention relates to a control system, in particular an emergency control system, of an automatic clutch. The clutch can operate with slip controlled by the driving speed when engaged, or can be disengaged or remain disengaged when the engine speed is excessive, and can also be disengaged when there is an idling signal.
Abstract:
A vehicle driving device includes: a clutch that is provided between a driving shaft of an engine and an input shaft of a manual transmission and that connects the driving shaft and the input shaft to each other or disconnects the driving shaft and the input shaft from each other; a detection unit that detects an obstacle that is an obstacle to traveling of a host vehicle; a collision possibility determination unit that determines a possibility of collision between the obstacle and the host vehicle based on obstacle detection information detected by the detection unit; and a collision avoidance unit that, when the collision possibility determination unit determines that there is a possibility of collision with the obstacle, performs a fuel cut of the engine even if a rotation speed of the engine is less than an idling rotation speed.
Abstract:
A coasting control device capable of avoiding coasting control during running on road having a small coefficient of friction between a tire and a road surface (“low μ roads”) includes a low μ road running recognition unit which recognizes that a vehicle is running on a low μ road and a unit for prohibiting coasting control during low μ road running when the low μ road running recognition unit recognizes that the vehicle is running on a low μ road.
Abstract:
A system includes a compressor, a control unite and a clutch assigned to the compressor. The control unit is suitable for opening and closing the clutch in order to economize energy. The control unit is suitable for carrying out a monitoring routine during which the clutch is opened or closed in order to prevent the clutch, the compressor and the components arranged downstream of the compressor from being damaged. A method for controlling the system, including the compressor, the control unit and the clutch associated with the compressor, is also provided.