Abstract:
In an example, a first data structure can be read with a first read voltage dedicated to the first data structure. A second data structure that stores a larger quantity of data than the first data structure can be with a second read voltage that is dedicated to the second data structure. The first data structure can be with a third read voltage in response to a quantity of errors in reading the first data structure being greater than or equal to a first threshold quantity. The second data structure can be read with the third read voltage in response to a quantity of errors in reading the second data structure being greater than or equal to a second threshold quantity. The read voltages can be based on a temperature of an apparatus that includes the first and second data structures.
Abstract:
Methods, systems, and devices related to auto-referenced memory cell read techniques are described. The auto-referenced read may encode user data to include a certain number bits having a first logic state prior to storing the user data in memory cells. Subsequently, reading the encoded user data may be carried out by applying a read voltage to the memory cells while monitoring a series of switching events by activating a subset of the memory cells having the first logic state. The auto-referenced read may identify a particular switching event that correlates to a median threshold voltage value of the subset of the memory cells. Then, the auto-referenced read may determine a reference voltage that takes into account a statistical property of threshold voltage distribution of the subset of the memory cells. The auto-referenced read may identify a time duration to maintain the read voltage based on determining the reference voltage. When the time duration expires, the auto-referenced read may determine that the memory cells that have been activated correspond to the first logic state.
Abstract:
An apparatus has an array of memory cells and a controller coupled to the array. The controller is configured to track a sub-threshold leakage current through a number of memory cells of the array and determine a threshold voltage based on the sub-threshold leakage current.
Abstract:
Sensing memory cells can include: applying a voltage ramp to a group of memory cells to sense their respective states; sensing when a first switching event occurs to one of the memory cells responsive to the applied voltage ramp; stopping application of the voltage ramp after a particular amount of time subsequent to when the first switching event occurs; and determining which additional memory cells of the group experience the switching event during the particular amount of time. Those cells determined to have experienced the switching event responsive to the applied voltage ramp are sensed as storing a first data value and those cells determined to not have experienced the switching event responsive to the applied voltage ramp are sensed as storing a second data value. The group stores data according to an encoding function constrained such that each code pattern includes at least one data unit having the first data value.
Abstract:
Apparatuses and methods for data storage error protection are described. One example apparatus for data storage error protection includes an array of memory cells arranged in a first dimension and a second dimension. A controller is configured to determine a set of symbols corresponding to data stored in the memory cells. The controller is configured to add subsets of the set of symbols obliquely oriented to the first dimension and the second dimension to determine a number of parity check symbols. The controller is configured to use a same number of parity check symbols for protection of a first subset of memory cells oriented parallel to the first dimension as used for protection of a second subset of memory cells oriented parallel to the second dimension.
Abstract:
Methods and apparatus for Exclusive OR (XOR) programming of a memory device are described. A program internal to a device calculates parity or other values using an XOR Program Rule. In some embodiments, the program generates and stores a parity result directly in the memory device itself without intervention by an external controller. A method of parity generation in a memory device comprises executing an internal self-accumulating parity program, wherein the program accumulates a parity sum by superimposing newly accumulated parity information over previously stored parity information in the auxiliary memory system. In a stand-alone device embodiment, a new command “XOR program” is received with address and input data parameters causing stored data to be read at the input address and an XOR operation of the read data and new input data is performed. The results of the computation are written into memory.
Abstract:
Buffers, integrated circuits, apparatuses, and methods for adjusting drive strength of a buffer are disclosed. In an example apparatus, the buffer includes a driver. The driver includes a pull-up circuit coupled to a supply voltage node and an output node, and also includes a pull-down circuit coupled to a reference voltage node and the output node. A drive adjust circuit is coupled to at least one of the pull-up circuit and the pull-down circuit, with the drive adjust circuit configured to receive a feedback signal and, based at least in part on the feedback signal, adjust a current conducted through the at least one of the pull-up and pull-down circuits.
Abstract:
Apparatuses and methods for sensing fuse states are disclosed herein. An apparatus may include an array having a plurality of sense lines. A plurality of cells may be coupled to a sense line of the plurality of sense lines. A fuse sense circuit may coupled to the sense line of the plurality of sense lines and configured to receive a sense voltage from a cell of the plurality of cells. The sense voltage may be based, at least in part, on a state of a fuse corresponding to the cell of the plurality of cells. The fuse sense circuit may further be configured to compare the sense voltage to a reference voltage to provide a fuse state control signal indicative of the state of the fuse.
Abstract:
A system performs operations including: storing a first value in a first memory location used for selecting a sub-channel of a plurality of sub-channels in a communication channel, each of the plurality of sub-channels corresponding to one or more memory components of a plurality of memory components of the memory device, wherein the first value specifies that a sub-channel selecting function is enabled; receiving, through the communication channel, a command directed to the memory device; responsive to receiving the command, storing a second value in a second memory location, wherein the second value is obtained from the command; determining that the second value matches a third value stored in a third memory location, wherein the third value stored in the third memory location comprises a preset value corresponding to a first component of the plurality of components of the memory device; and executing, by the first component, the command.
Abstract:
A variety of applications can include a memory device having dynamic page mapping with compression. The memory device can include a mapping table having an entry location to associate a virtual page with a physical address of a first stripe of data of the virtual page. The entry location can include a flag along with the physical address of the first stripe. The flag can identify data of the virtual page as being compressed or uncompressed. A controller of the memory device, responsive to the flag identifying the data of virtual page being compressed, is structured to generate a format of compressed data of the first stripe with a header. The header can include a count of additional physical addresses to store compressed data of the virtual page and the additional physical addresses. Additional apparatus, systems, and methods are disclosed.