Abstract:
A semiconductor device includes a group of fin structures. The group of fin structures includes a conductive material and is formed by growing the conductive material in an opening of an oxide layer. The semiconductor device further includes a source region formed at one end of the group of fin structures, a drain region formed at an opposite end of the group of fin structures, and at least one gate.
Abstract:
A method of forming a semiconductor device includes forming a fin on an insulating layer, where the fin includes a number of side surfaces, a top surface and a bottom surface. The method also includes forming a gate on the insulating layer, where the gate has a substantially U-shaped cross-section at a channel region of the semiconductor device.
Abstract:
A semiconductor device may include a substrate and an insulating layer formed on the substrate. A first device may be formed on the insulating layer, including a first fin. The first fin may be formed on the insulating layer and may have a first fin aspect ratio. A second device may be formed on the insulating layer, including a second fin. The second fin may be formed on the insulating layer and may have a second fin aspect ratio different from the first fin aspect ratio.
Abstract:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin, source and drain regions and a gate. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The source region is formed on the insulating layer adjacent a first side of the fin and the drain region is formed on the second side of the fin opposite the first side. The source and drain regions have a greater thickness than the fin in the channel region of the semiconductor device.
Abstract:
A method of manufacturing a MOSFET type semiconductor device includes planarizing a gate material layer that is deposited over a channel. The planarization is performed in a multi-step process that includes an initial “rough” planarization and then a “fine” planarization. The slurry used for the finer planarization may include added material that tends to adhere to low areas of the gate material.
Abstract:
A method of forming a semiconductor device includes forming a fin on an insulating layer, where the fin includes a number of side surfaces, a top surface and a bottom surface. The method also includes forming a gate on the insulating layer, where the gate has a substantially U-shaped cross-section at a channel region of the semiconductor device.
Abstract:
Multiple dopant implantations are performed on a FinFET device to thereby distribute the dopant in a substantially uniform manner along a vertical depth of the FinFET in the source/drain junction. Each of the multiple implantations may be performed at different tilt angles.
Abstract:
A method for forming a group of structures in a semiconductor device includes forming a conductive layer on a substrate, where the conductive layer includes a conductive material, and forming an oxide layer over the conductive layer. The method further includes etching at least one opening in the oxide layer, filling the at least one opening with the conductive material, etching the conductive material to form spacers along sidewalls of the at least one opening, and removing the oxide layer and a portion of the conductive layer to form the group of structures.
Abstract:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin and two gates. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. A first gate is formed on the insulating layer and is adjacent a first sidewall of the fin. The second gate is formed on the insulating layer and is adjacent a second sidewall of the fin opposite the first sidewall. The first and second gates both include a conductive material and are electrically separated by the fin.
Abstract:
A semiconductor device includes a semiconductor fin formed on an insulator and sidewall spacers formed adjacent the sides of the fin. A gate material layer is formed over the fin and the sidewall spacers and etched to form a gate. The presence of the sidewall spacers causes a topology of the gate material layer to smoothly transition over the fin and the first and second sidewall spacers.