Abstract:
MAC layer frame aggregation and block acknowledgement are used in some WLAN technologies to improve efficiency of a communications channel by reducing PHY layer overhead. A frame aggregation window size defines how many MAC protocol data units (MPDUs) are included in an aggregated MPDU (AMPDU) frame. The frame aggregation window for a subsequent AMPDU frame is typically dependent upon the characteristics of the block acknowledgement—such as the number of non-acknowledged (NAK) MPDUs or the position of a hole in the previous AMPDU frame. A small frame aggregation window size may impact throughput especially at higher transmission rates. In this disclosure a transmission rate may be determined based, at least in part, on a projected frame aggregation window size resulting from a block acknowledgement. The frame aggregation feedback (e.g. block acknowledgement) may be used by a rate control module to determine a transmission rate that optimizes frame aggregation efficiency.
Abstract:
One innovation includes an apparatus, for wirelessly communicating with a communication system via a first wireless channel and a second wireless channel, including a memory unit that is configured to store a first data packet and a second data packet, the first data packet and the second data packet have consecutive sequence numbers. The apparatus further includes a processor configured to retrieve the first data packet and the second data packet from the memory unit, a transceiver that is configured to transmit the first data packet to the communication system via the first channel, to receive a first acknowledgement from the communication system and to transmit the second data packet to the communication system via the second channel after the processor detects that the first acknowledgement comprises a positive acknowledgement of the first reception information.
Abstract:
A duty cycle scheme for wireless communication employs three or more duty cycle levels. In some aspects, a wireless device may continually scan for signals in an active state associated with a first duty cycle, periodically scan for signals during a periodic state associated with a second duty cycle, and periodically scan for signals during a standby state associated with a third duty cycle. Here, the second duty cycle may be lower than the first duty cycle and the third duty cycle may be lower than the second duty cycle. In some aspects the timing of different states may be correlated. In some aspects each wireless in a system may independently control its duty cycle states.
Abstract:
A method and apparatus for concurrent wireless communications on multiple channels of the same frequency band. A wireless device determines when a first transceiver chain of the wireless device is to receive a first data signal. The wireless device then transmits a second data signal via a second transceiver chain of the wireless device based at least in part on the determination. The wireless device further suspends the transmission of the second data signal in response to the determination that the first transceiver chain is to receive the first data signal.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.
Abstract:
Apparatuses and methods are disclosed for receiving queued downlink (DL) data. In accordance with example embodiments, a first wireless device may receive, from a second wireless device, a beacon frame indicating a presence of queued DL data for concurrent delivery to a plurality of wireless devices. The first wireless device may receive permission to request delivery of the queued DL data. The first wireless device may transmit, to the second wireless device, a request for delivery of the queued DL data based on the permission. The first wireless device may then receive the queued DL data from the second wireless device.
Abstract:
A method and apparatus for concurrent wireless communications on multiple channels of the same frequency band. A wireless device determines when a first transceiver chain of the wireless device is to receive a first data signal. The wireless device then transmits a second data signal via a second transceiver chain of the wireless device based at least in part on the determination. The wireless device further suspends the transmission of the second data signal in response to the determination that the first transceiver chain is to receive the first data signal.
Abstract:
A system and method are disclosed that may allow a STA to request one or more non-associated APs to initiate channel sounding operations with the STA. In response to the request, a number of the non-associated APs may send one or more NDPs to the STA. The STA may use the received NDPs to determine a goodput value for each of the number of non-associated APs. The STA may then use the determined goodput values to select one of the number of non-associated APs with which to associate. Thereafter, the STA may initiate an association operation with the selected AP.
Abstract:
An access point may transmit, to a first wireless device, a message indicating a busy period of the access point. The busy period is a time during which the access point will perform wireless operations with at least a second wireless device different from the first wireless device. During the busy period, the access point may refrain from transmitting from the access point to the first wireless device. The message indicating the busy period may include a duration of the busy period. The message indicating the busy period may be included in a portion of a data transmission to the first wireless device. The first wireless device may enter a low power mode (e.g., sleep operating state) responsive to the busy period.
Abstract:
Various aspects of the disclosure described herein provide for optimizing rate control during a selection of a communications profile from a set of communications profiles by taking into account effective frame aggregation size as a function of packet error rate (PER). An expected throughput may also be determined for each communications profile and updated after each transmission so that a communications profile having the highest expected throughput may be chosen for a particular frame transmission.