Abstract:
The present disclosure relates to a slow-wave transmission line for transmitting slow-wave signals with reduced loss. In this regard, the slow-wave transmission line is formed in a multi-layer substrate and includes an undulating signal path. The undulating signal path includes at least two loop structures, wherein each loop structure includes at least two via structures connected by at least one intra-loop trace. The undulating signal path further includes at least one inter-loop trace connecting the at least two loop structures. Additionally, the slow-wave transmission line includes a first ground structure disposed along the undulating signal path. In this manner, a loop inductance is formed by each of the at least two loop structures, while a first distributed capacitance is formed between the undulating signal path and the ground structure.
Abstract:
Disclosed is an RF front-end with improved insertion loss having at least a first resonator with a first port and a second port and at least a second resonator having a third port and a fourth port, wherein the first resonator and the second resonator are magnetically coupled by no more than 5%. Also included is at least one coupling structure coupled between the second port of the first resonator and the third port of the second resonator, wherein the coupling structure has a coupling control input for varying a coupling coefficient between the first resonator and the second resonator such that an RF signal transfer between the first port of the first resonator and the fourth port of the second resonator is controllably variable between 5% and 95%.
Abstract:
A printed circuit module and methods for manufacturing the same are disclosed. The printed circuit module includes a printed circuit substrate with a thinned die attached to the printed circuit substrate. The thinned die includes at least one device layer over the printed circuit substrate and a buried oxide (BOX) layer over the at least one device layer. A polymer layer is disposed over the BOX layer, wherein the polymer has a thermal conductivity greater than 2 watts per meter Kelvin (W/mK) and an electrical resistivity of greater than 103 Ohm-cm.
Abstract:
Radio frequency (RF) filter structures and related methods and RF front-end circuitry are disclosed. In one embodiment, an RF filter structure includes a first terminal and a first tunable RF filter path defined between the first terminal and a second terminal. The first tunable RF filter path is tunable to provide impedance matching between the first terminal and the second terminal at a first frequency. The first frequency may be provided within a first frequency band. Additionally, the RF filter structure includes a second tunable RF filter path defined between the first terminal and the second terminal. The second tunable RF filter path is tunable to provide impedance matching between the first terminal and the second terminal at a second frequency. The second frequency may be within a second frequency band. In this manner, the RF filter structure is configured to provide impedance tuning for multiple impedance bands simultaneously.
Abstract:
RF communications circuitry, which includes a first RF filter structure and control circuitry, is disclosed. The first RF filter structure includes a pair of weakly coupled resonators and a first tunable RF filter. The control circuitry provides a first filter control signal. The first tunable RF filter receives and filters an upstream RF signal to provide a first filtered RF signal, such that a center frequency of the first tunable RF filter is based on the first filter control signal.
Abstract:
Disclosed is an RF front-end with improved insertion loss having at least a first resonator with a first port and a second port and at least a second resonator having a third port and a fourth port, wherein the first resonator and the second resonator are magnetically coupled by no more than 5%. Also included is at least one coupling structure coupled between the second port of the first resonator and the third port of the second resonator, wherein the coupling structure has a coupling control input for varying a coupling coefficient between the first resonator and the second resonator such that an RF signal transfer between the first port of the first resonator and the fourth port of the second resonator is controllably variable between 5% and 95%.
Abstract:
An apparatus, which includes a first electronic device, a first nonlinear capacitance compensation circuit, and a capacitance compensation control circuit, is disclosed. The first electronic device has a first nonlinear capacitance and is coupled to the first nonlinear capacitance compensation circuit, which has a first compensation capacitance and receives a first compensation control signal. The capacitance compensation control circuit adjusts the first compensation capacitance using the first compensation control signal to at least partially linearize the first nonlinear capacitance.
Abstract:
The present disclosure relates to a reconfigurable directional coupler with a variable coupling factor that can be changed in value as a function of a desired transmit band of operation. The reconfigurable directional coupler includes a primary inductive segment, secondary inductive segments, and switch circuitry configured to change the total coupling capacitance formed between the primary and secondary inductive segments by selectively switching the secondary inductive segments into the secondary signal path. Simultaneously, the mutual inductance and coupling factor between the primary and the secondary inductive segments are reconfigured.
Abstract:
The present disclosure relates to a slow-wave transmission line for transmitting slow-wave signals with reduced loss. In this regard, the slow-wave transmission line is formed in a multi-layer substrate and includes an undulating signal path. The undulating signal path includes at least two loop structures, wherein each loop structure includes at least two via structures connected by at least one intra-loop trace. The undulating signal path further includes at least one inter-loop trace connecting the at least two loop structures. Additionally, the slow-wave transmission line includes a first ground structure disposed along the undulating signal path. In this manner, a loop inductance is formed by each of the at least two loop structures, while a first distributed capacitance is formed between the undulating signal path and the ground structure.
Abstract:
This disclosure relates generally to radio frequency (RF) amplification devices and methods of operating the same. In one embodiment, an RF amplification device includes an RF amplification circuit and a stabilizing transformer network. The RF amplification circuit defines an RF signal path and is configured to amplify an RF signal propagating in the RF signal path. The stabilizing transformer network is operably associated with the RF signal path defined by the RF amplification circuit. Furthermore, the stabilizing transformer network is configured to reduce parasitic coupling along the RF signal path of the RF amplification circuit as the RF signal propagates in the RF signal path. In this manner, the stabilizing transformer network allows for inexpensive components to be used to reduce parasitic coupling while allowing for smaller distances along the RF signal path.