摘要:
A method of growing single crystal III-N material on a semiconductor substrate includes providing a substrate including one of crystalline silicon or germanium and a layer of rare earth oxide. A layer of single crystal III-N material is epitaxially grown on the substrate using a process that elevates the temperature of the layer of rare earth oxide into a range of approximately 750° C. to approximately 1250° C. in the presence of an N or a III containing species, whereby a portion of the layer of rare earth oxide is transformed to a new alloy.
摘要:
A pumped sensor system includes a substrate with a first layer formed thereon and doped for a first type conduction and a second layer doped for a second type conduction, whereby the first and second layers form a silicon light detector at an up-conversion wavelength. A ternary rare earth oxide is formed on the second layer and crystal lattice matched to the second layer. The oxide is a crystalline bulk oxide with a controlled percentage of an up-conversion component and a majority component. The majority component is insensitive to any of pump, sense, or up-conversion wavelengths and the up-conversion component is selected to produce energy at the up-conversion wavelength in response to receiving energy at the pump and sense wavelengths. The layer of oxide defines a light input area sensitive to a pump wavelength and a light input area sensitive to a sense wavelength.
摘要:
A silicon-on-insulator (SOI) substrate structure and method of fabrication including a single crystal silicon substrate, a layer of single crystal rare earth oxide formed on the substrate, a layer of engineered single crystal silicon formed on the layer of single crystal rare earth oxide, and a single crystal insulator layer of IIIOxNy formed on the engineered single crystal silicon layer. In some embodiments the III material in the insulator layer includes more than on III material. In a preferred embodiment the single crystal rare earth oxide includes Gd2O3 and the single crystal insulator layer of IIIOxNy includes one of AlOxNy and AlGaOxNy.
摘要翻译:一种绝缘体上硅(SOI)衬底结构及其制造方法,包括单晶硅衬底,在衬底上形成的单晶稀土氧化物层,在单晶稀土层上形成的工程化单晶硅层 在工程化的单晶硅层上形成IIIOxNy的单晶绝缘体层。 在一些实施例中,绝缘体层中的III材料包括多于III族材料。 在优选的实施方案中,单晶稀土氧化物包括Gd 2 O 3,并且IIIO x N y的单晶绝缘体层包括AlO x N y和AlGaO x N y之一。
摘要:
A method of forming a template on a silicon substrate includes epitaxially growing a template of single crystal ternary rare earth oxide on a silicon substrate and epitaxially growing a single crystal semiconductor active layer on the template. The active layer has either a cubic or a hexagonal crystal structure. During the epitaxial growth of the template, a partial pressure of oxygen is selected and a ratio of metals included in the ternary rare earth oxide is selected to match crystal spacing and structure of the template at a lower interface to the substrate and to match crystal spacing and structure of the template at an upper interface to crystal spacing and structure of the semiconductor active layer. A high oxygen partial pressure during growth of the template produces a stabilized cubic crystal structure and a low oxygen partial pressure produces a predominant peak with a hexagonal crystal structure.
摘要:
Rare earth semiconductor and ferromagnetic material epitaxially grown on a silicon substrate includes a buffer of single crystal epitaxial rare earth/aluminum nitride positioned on a single crystal silicon substrate and a single crystal epitaxial rare earth oxide positioned on the single crystal epitaxial aluminum nitride. A layer of single crystal epitaxial semiconductor and ferromagnetic rare earth nitride is positioned on the buffer. A layer of III-V semiconductive material may be optionally positioned on the rare earth nitride layer.
摘要:
A III-N on silicon structure including a substrate of single crystal silicon with a cubic crystal structure and a layer of single crystal III-N material. First and second single crystal transition layers are positioned in overlying relationship with the layers graduated from a cubic crystal structure at one surface to a hexagonal crystal structure at an opposed surface. The first and second transition layers are positioned between the substrate and the layer of III-N material with the one surface lattice matched to the substrate and the opposed surface lattice matched to the layer of III-N material.
摘要:
Layer structures are described for the formation of Group III-V semiconductor material over Si and Si . Various buffer layers and interfaces reduce the lattice strain between the Group III-V semiconductor material and the Si or Si layers, allowing for the epitaxial formation of high quality Group III-V semiconductor material.
摘要:
Rare earth semiconductor and ferromagnetic material epitaxially grown on a silicon substrate includes a buffer of single crystal epitaxial rare earth/aluminum nitride positioned on a single crystal silicon substrate and a single crystal epitaxial rare earth oxide positioned on the single crystal epitaxial aluminum nitride. A layer of single crystal epitaxial semiconductor and ferromagnetic rare earth nitride is positioned on the buffer. A layer of III-V semiconductive material may be optionally positioned on the rare earth nitride layer.
摘要:
A method of forming a template on a silicon substrate includes epitaxially growing a template of single crystal ternary rare earth oxide on a silicon substrate and epitaxially growing a single crystal semiconductor active layer on the template. The active layer has either a cubic or a hexagonal crystal structure. During the epitaxial growth of the template, a partial pressure of oxygen is selected and a ratio of metals included in the ternary rare earth oxide is selected to match crystal spacing and structure of the template at a lower interface to the substrate and to match crystal spacing and structure of the template at an upper interface to crystal spacing and structure of the semiconductor active layer. A high oxygen partial pressure during growth of the template produces a stabilized cubic crystal structure and a low oxygen partial pressure produces a predominant peak with a hexagonal crystal structure.
摘要:
A method of forming a layer of amorphous silicon oxide positioned between a layer of rare earth oxide and a silicon substrate. The method includes providing a crystalline silicon substrate and depositing a layer of rare earth metal on the silicon substrate in an oxygen deficient ambient at a temperature above approximately 500° C. The rare earth metal forms a layer of rare earth silicide on the substrate. A first layer of rare earth oxide is deposited on the layer of rare earth silicide with a structure and lattice constant substantially similar to the substrate. The structure is annealed in an oxygen ambience to transform the layer of rare earth silicide to a layer of amorphous silicon and an intermediate layer of rare earth oxide between the substrate and the first layer of rare earth oxide.