Abstract:
An input/output circuit includes a data buffer group configured to buffer data received through data lines, a data strobe buffer configured to buffer a data strobe signal to output a buffered data strobe clock, a digitally controlled delay line configured to output delay data by controlling skew of the buffered data according to a delay code, a data strobe clock output circuit configured to generate a delay data strobe clock in response to the buffered data strobe clock, a sampler configured to sample the delay data according to the delay data strobe clock to output sampled data, and a de-skew circuit configured to update the delay code according to the sampled data.
Abstract:
A receiving device may include a buffer, a summer circuit, a first delay cell, and a second delay cell. The buffer may receive an external signal. The summer circuit may sum an output of the buffer, a first feedback signal, and a second feedback signal. The first delay cell may generate the first feedback signal by delaying an output of the summer circuit. The second delay cell may generate the second feedback signal by delaying the first feedback signal. The delay amounts of the first and second delay cells may be set based on a delay control voltage.
Abstract:
An integrated circuit may be provided. The integrated circuit may include a transmitter and a receiver. The transmitter outputs first transmission data to a first channel and outputs second transmission data to a second channel. The phase of the first transmission data transmitted through the first channel is different from a phase of the second transmission data transmitted through the second channel.
Abstract:
A buffer may include a first sensing unit configured to sense data, and a second sensing unit configured to generate equalization control signals according to outputs of the first sensing unit. The buffer may include an equalization delay compensation unit configured to compensate the equalization control signals for signal processing delay times of the equalization control signals, and generate delay-compensated equalization control signals. The buffer may include a noise removal unit configured to primarily remove noise of the output signals of the first sensing unit according to the equalization control signals, and secondarily remove noise of the output signals of the first sensing unit according to the delay-compensated equalization control signals.
Abstract:
A semiconductor device is disclosed, which relates to a technology for reducing current consumption of a semiconductor chip configured to operate a transmitter (Tx) at a high speed. The semiconductor device includes a data driving unit configured to output a pull-up drive signal and a pull-down drive signal by level-shifting an input signal according to a clock signal; and a data output unit configured to adjust slew rates of the pull-up drive signal and the pull-down drive signal according to a code signal, and output impedance-adjusted signals to an output terminal.