Abstract:
Non-volatile memory including rows and columns of memory cells, the columns of memory cells including pairs of twin memory cells including a common selection gate. According to the disclosure, two bitlines are provided per column of memory cells. The adjacent twin memory cells of the same column are not connected to the same bitline while the adjacent non-twin memory cells of the same column are connected to the same bitline.
Abstract:
The present disclosure relates to a non-volatile memory cell on a semiconductor substrate, comprising a first transistor comprising a control gate, a floating gate and a drain region, a second transistor comprising a control gate, a floating gate and a drain region, in which the floating gates of the first and second transistors are electrically coupled, and the second transistor comprises a conducting region electrically coupled to its drain region and extending opposite its floating gate through a tunnel dielectric layer.
Abstract:
The present disclosure relates to a method for controlling two twin memory cells each comprising a floating-gate transistor comprising a state control gate, in series with a select transistor comprising a select control gate common to the two memory cells, the drains of the floating-gate transistors being connected to a same bit line, the method comprising steps of programming the first memory cell by hot-electron injection, by applying a positive voltage to the bit line and a positive voltage to the state control gate of the first memory cell, and simultaneously, of applying to the state control gate of the second memory cell a positive voltage capable of causing a programming current to pass through the second memory cell, without switching it to a programmed state.
Abstract:
The present disclosure relates to a memory comprising at least one word line comprising a row of split gate memory cells each comprising a selection transistor section comprising a selection gate and a floating-gate transistor section comprising a floating gate and a control gate. According to the present disclosure, the memory comprises a source plane common to the memory cells of the word line, to collect programming currents passing through memory cells during their programming, and the selection transistor sections of the memory cells are connected to the source plane. A programming current control circuit is configured to control the programming current passing through the memory cells by acting on a selection voltage applied to a selection line.
Abstract:
A method for characterizing or measuring a capacitance includes linking the capacitance to a first mid-point of a first capacitive divider bridge, applying to the divider bridge a bias voltage, maintaining the voltage of the first mid-point near a reference voltage, discharging a second mid-point of a second divider bridge in parallel with the first using a constant current, and measuring the time for a voltage of the second mid-point to become equal to the voltage of the first mid-point. The method may be applied in particular to the control of a touch screen display.
Abstract:
A charge flow circuit for a time measurement, including a plurality of elementary capacitive elements electrically in series, each elementary capacitive element leaking through its dielectric space.
Abstract:
In an embodiment an integrated device includes a first physical unclonable function module configured to generate an initial data group and management module configured to generate an output data group from at least the initial data group, authorize only D successive deliveries of the output data group on a first output interface of the device, D being a non-zero positive integer, and prevent any new generation of the output data group.
Abstract:
In an embodiment a non-volatile memory device includes a memory plane including at least one memory area including an array of memory cells having two rows and N columns, wherein each memory cell comprises a state transistor having a control gate and a floating gate selectable by a vertical selection transistor buried in a substrate and including a buried selection gate, and wherein each column of memory cells includes a pair of twin memory cells, two selection transistors of the pair of twin memory cells having a common selection gate and a processing device configured to store in the memory area information including a succession of N bits so that, with exception of the last bit of the succession, a current bit of the succession is stored in two memory cells located on the same row and on two adjacent columns and a current bit and the following bit are respectively stored in two twin cells.
Abstract:
An embodiment system comprises a physical unclonable function device, wherein the device comprises a first assembly of non-volatile memory cells each having a selection transistor embedded in a semiconductor substrate and a depletion-type state transistor having a control gate and a floating gate that are electrically connected, the state transistors having respective effective threshold voltages belonging to a common random distribution, and a processing circuit configured to deliver, to an output interface of the device, a group of output data based on a reading of the effective threshold voltages of the state transistors of the memory cells of the first assembly.
Abstract:
An integrated circuit comprises a memory device including a memory plane having non-volatile memory cells and being non-observable in read mode from outside the memory device, a controller, internal to the memory device, configured to detect the memorized content of the memory plane, and when the memorized content contains locking content, automatically lock any access to the memory plane from outside the memory device, the integrated circuit then being in a locked status, and authorize delivery outside the memory device of at least one sensitive datum stored in the memory plane.