摘要:
The present invention provides a method for fabricating improved integrated circuit devices. The method of the present invention enables selective hardening of gate oxide layers and includes providing a semiconductor substrate having a gate oxide layer formed thereover. A resist is then formed over the gate oxide layer and patterned to expose one or more areas of the gate oxide layer which are to be hardened. The exposed portions of the gate oxide layer are then hardened using a true remote plasma nitridation (RPN) scheme or a high-density plasma (HDP) RPN scheme. Because the RPN scheme used in the method of the present invention runs at low temperature, the patterned resist remains stable through the RPN process, and those areas of gate oxide layer which are exposed by the patterned resist are selectively hardened by the RPN treatment, while those areas covered by the patterned resist remain unaffected. The method of the present invention is extremely adaptable and may further include additional thermal oxidation steps used to thicken non-hardened portions of the gate oxide layer, as well as additional masking, and hardening steps, which may provide multiple hardened or non-hardened portions of varying thicknesses within a single gate oxide layer. Thus, the method of the present invention may be used to fabricate an IC device having selectively hardened N-channel and P-channel devices having gate oxides of varying thickness.
摘要:
In one aspect, the invention includes a method of semiconductive wafer processing comprising forming a silicon nitride layer over a surface of a semiconductive wafer, the silicon nitride layer comprising at least two portions, one of said at least two portions generating a compressive force against the other of the at least two portions, and the other of the at least two portions generating a tensile force against the one of the at least two portions. In another aspect, the invention includes a method of reducing stress on semiconductive wafer, the semiconductive wafer having a pair of opposing surfaces and having more silicon nitride over one of the opposing surfaces than over the other of the opposing surfaces, the method comprising providing the silicon nitride over the one of the opposing surfaces to comprise a first portion, a second portion and a third portion, the first, second and third portions being elevationally displaced relative to one another, the second portion being between the first and third portions, the second portion having a greater stoichiometric amount of silicon than the first and third portions, the semiconductive wafer being subjected to less stress than if the silicon nitride over the one of the opposing surfaces had a constant stoichiometric amount of silicon throughout its thickness. In yet other aspects, the invention includes semiconductive wafer assemblies.
摘要:
In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer. In another aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; c) forming a photoresist over and against the barrier layer; d) exposing the photoresist to a patterned beam of light to render at least one portion of the photoresist more soluble in a solvent than an other portion, the barrier layer being an antireflective surface that absorbs light passing through the photoresist; and e) exposing the photoresist to the solvent to remove the at least one portion while leaving the other portion over the barrier layer. In yet another aspect, the invention includes a semiconductor wafer assembly, comprising: a) a silicon nitride material, the material having a surface; b) a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) a photoresist over and against the barrier layer.
摘要:
In one aspect, the invention includes a method of semiconductive wafer processing comprising forming a silicon nitride layer over a surface of a semiconductive wafer, the silicon nitride layer comprising at least two portions, one of the at least two portions generating a compressive force against the other of the at least two portions, and the other of the at least two portions generating a tensile force against the one of the at least two portions. In another aspect, the invention includes a method of reducing stress on semiconductive wafer, the semiconductive wafer having a pair of opposing surfaces and having more silicon nitride over one of the opposing surfaces than over the other of the opposing surfaces, the method comprising providing the silicon nitride over the one of the opposing surfaces to comprise a first portion, a second portion and a third portion, the first, second and third portions being elevationally displaced relative to one another, the second portion being between the first and third portions, the second portion having a greater stoichiometric amount of silicon than the first and third portions, the semiconductive wafer being subjected to less stress than if the silicon nitride over the one of the opposing surfaces had a constant stoichiometric amount of silicon throughout its thickness. In yet other aspects, the invention includes semiconductive wafer assemblies.
摘要:
The invention encompasses a method of incorporating nitrogen into a silicon-oxide-containing layer. The silicon-oxide-containing layer is exposed to a nitrogen-containing plasma to introduce nitrogen into the layer. The nitrogen is subsequently thermally annealed within the layer to bond at least some of the nitrogen to silicon within the layer. The invention also encompasses a method of forming a transistor. A gate oxide layer is formed over a semiconductive substrate. The gate oxide layer comprises silicon dioxide. The gate oxide layer is exposed to a nitrogen-containing plasma to introduce nitrogen into the layer, and the layer is maintained at less than or equal to 400° C. during the exposing. Subsequently, the nitrogen within the layer is thermally annealed to bond at least a majority of the nitrogen to silicon. At least one conductive layer is formed over the gate oxide layer. Source/drain regions are formed within the semiconductive substrate, and are gatedly connected to one another by the at least one conductive layer. The invention also encompasses transistor structures.
摘要:
An architecture, and its method of formation and operation, containing a high density memory array of semi-volatile or non-volatile memory elements, including, but not limited to, programmable conductive access memory elements. The architecture in one exemplary embodiment has a pair of semi-volatile or non-volatile memory elements which selectively share a bit line through respective first electrodes and access transistors controlled by respective word lines. The memory elements each have a respective second electrode coupled thereto which in cooperation with the bit line access transistors and first electrode, serves to apply read, write and erase signals to the memory element.
摘要:
A method for refreshing PCRAM cells programmed to a low resistance state and entire arrays of PCRAM cells uses a simple refresh scheme which does not require separate control and application of discrete refresh voltages to the PCRAM cells in an array. Specifically, the array structure of a PCRAM device is constructed to allow leakage current to flow through each programmed cell in the array to refresh the programmed state. In one embodiment, the leakage current flows across the access device between the anode of the memory element and the bit line to which the cell is connected, for each memory cell in the array which has been programmed to the low resistance state. In another embodiment, the leakage current flows to the programmed cells through a doped substrate or doped regions of a substrate on which each cell is formed. An entire array is refreshed simultaneously by forming each memory element in the array to have one common anode formed as a single cell plate for the array. Only PCRAM cells in the array written to the low resistance state are refreshed by the controlled leakage current, whereas cells in the high resistance state are not affected by the refresh operation.
摘要:
A method of metal doping a chalcogenide material includes forming a metal over a substrate. A chalcogenide material is formed on the metal. Irradiating is conducted through the chalcogenide material to the metal effective to break a chalcogenide bond of the chalcogenide material at an interface of the metal and chalcogenide material and diffuse at least some of the metal outwardly into the chalcogenide material. A method of metal doping a chalcogenide material includes surrounding exposed outer surfaces of a projecting metal mass with chalcogenide material. Irradiating is conducted through the chalcogenide material to the projecting metal mass effective to break a chalcogenide bond of the chalcogenide material at an interface of the projecting metal mass outer surfaces and diffuse at least some of the projecting metal mass outwardly into the chalcogenide material. In certain aspects, the above implementations are incorporated in methods of forming non-volatile resistance variable devices. In one implementation, a non-volatile resistance variable device in a highest resistance state for a given ambient temperature and pressure includes a resistance variable chalcogenide material having metal ions diffused therein. Opposing first and second electrodes are received operatively proximate the resistance variable chalcogenide material. At least one of the electrodes has a conductive projection extending into the resistance variable chalcogenide material.
摘要:
The invention encompasses a method of forming an oxide region over a semiconductor substrate. A nitrogen-containing layer is formed across at least some of the substrate. After the nitrogen-containing layer is formed, an oxide region is grown from at least some of the substrate. The nitrogen of the nitrogen-containing layer is dispersed within the oxide region. The invention also encompasses a method of forming a pair of transistors associated with a semiconductor substrate. A substrate is provided. A first region of the substrate is defined, and additionally a second region of the substrate is defined. A first oxide region is formed which covers at least some of the first region of the substrate, and which does not cover any of the second region of the substrate. A nitrogen-comprising layer is formed across at least some of the first oxide region and across at least some of the second region of the substrate. After the nitrogen-comprising layer is formed, a second oxide region is grown from the second region of the substrate. A first transistor gate is formed over the first oxide region, and a second transistor gate is formed over the second oxide region.
摘要:
The invention is related to methods and apparatus for providing a resistance variable memory element with improved data retention and switching characteristics. According to an embodiment of the invention a resistance variable memory element is provided having at least one silver-selenide layer in between glass layers, wherein at least one of the glass layers is a chalcogenide glass, preferably having a GexSe100−x composition.
摘要翻译:本发明涉及用于提供具有改进的数据保持和切换特性的电阻可变存储元件的方法和装置。 根据本发明的实施例,提供了一种电阻可变存储元件,其在玻璃层之间具有至少一个硒化银层,其中至少一个玻璃层是硫族化物玻璃,优选具有Ge x 100< 100< 100>组合物。