摘要:
A gas field ion source that can simultaneously increase a conductance during rough vacuuming and reduce an extraction electrode aperture diameter from the viewpoint of the increase of ion current. The gas field ion source has a mechanism to change a conductance in vacuuming a gas molecule ionization chamber. That is, the conductance in vacuuming a gas molecule ionization chamber is changed in accordance with whether or not an ion beam is extracted from the gas molecule ionization chamber. By forming lids as parts of the members constituting the mechanism to change the conductance with a bimetal alloy, the conductance can be changed in accordance with the temperature of the gas molecule ionization chamber, for example the conductance is changed to a relatively small conductance at a relatively low temperature and to a relatively large conductance at a relatively high temperature.
摘要:
A gas field ion source that can simultaneously increase a conductance during rough vacuuming and reduce an extraction electrode aperture diameter from the viewpoint of the increase of ion current. The gas field ion source has a mechanism to change a conductance in vacuuming a gas molecule ionization chamber. That is, the conductance in vacuuming a gas molecule ionization chamber is changed in accordance with whether or not an ion beam is extracted from the gas molecule ionization chamber. By forming lids as parts of the members constituting the mechanism to change the conductance with a bimetal alloy, the conductance can be changed in accordance with the temperature of the gas molecule ionization chamber, for example the conductance is changed to a relatively small conductance at a relatively low temperature and to a relatively large conductance at a relatively high temperature.
摘要:
An n-type TFT and a p-type TFT are realized by selectively changing only a cover coat without changing a TFT material using an equation for applying the magnitude of a difference in the Fermi energy between an interface of semiconductor and an electrode and between an interface of semiconductor and insulator. At this time, in order to configure a predetermined circuit, the process is performed, as a source electrode and a drain electrode of the p-type TFT and a source electrode and a drain electrode of the n-type TFT being connected all, respectively, and an unnecessary interconnection is cut by irradiating light using a scanning laser exposure apparatus or the like.
摘要:
It is an object of the present invention to improve the stability of a gas field ionization ion source.A GFIS according to the present invention is characterized in that the aperture diameter of the extraction electrode can be set to any of at least two different values or the distance from the apex of the emitter to the extraction electrode can be set to any of at least two different values. In addition, solid nitrogen is used for cooling. According to the present invention, it is possible to not only let divergently emitted ions go through the aperture of the extraction electrode but also, in behalf of differential pumping, reduce the diameter of the aperture. In addition, it is possible to reduce the physical vibration of the cooling means. Consequently, it is possible to provide a highly stable GFIS and a scanning charged particle microscope equipped with such a GFIS.
摘要:
The present invention provides a picture element driving circuit of an active matrix display device, with a configuration of no through-holes, including two or more FETs. A display device of the present invention has a structure in which a first field-effect transistor and a second field-effect transistor are provided, insulation films of the first and second field-effect transistor are formed on the same layer, and semiconductors used as channels of the two field-effect transistors are formed on both surfaces of the insulation film, respectively. The display device has an electric circuit of a structure in which one of source/drain electrodes of the first field-effect transistor is used as a gate electrode of the second field-effect transistor.
摘要:
A manufacturing method of a field effect transistor in which, a patterned gate electrode is provided on a substrate, and a gate insulator is provided on the substrate and the gate electrode, a source electrode and a drain electrode are spaced apart from each other on the gate insulator, a region to be a channel between the source electrode and the drain electrode is provided, a boundary between the region and either one of the source electrode and the drain electrode is linear, a boundary between the region and either one of the drain electrode and the source electrode is non-linear, the boundary has a continuous or discontinuous shape, and the boundary part has a plurality of recess parts, the surface of the region has hydrophilicity and a peripheral region of the region prepares a member having water-repellency, and a solution including semiconductor organic molecules is supplied to the region, and the solution is dried.
摘要:
A ferromagnetic material can be formed in a very small size on the order of an atomic size and is capable of being stably magnetized. The ferromagnetic material comprises basic unit structures each consisting of a first atom (11), a second atom (12) of the same kind as the first atom (11), and a third atom (or atomic group) (13) of the same kind as the first atom (11) or of a kind different from that of the first atom (11). In each of the basic unit structures, the atoms are arranged on a surface of a substrate so that a chemical bond (14) is formed between the first atom or molecule and the third atom or molecule, a chemical bond (14) is formed between the second atom or molecule and the third atom or molecule, and a chemical bond or an electron path (15) not passing the third atom is formed between the first and the second atom or molecule, wherein said third atoms or molecules consist of As atoms.
摘要:
A ferromagnetic fine line has no loss of spontaneous magnetization even when fabricated ultra-small. The magnetization can be controlled by the proximity of the electrodes and the atomic level structure, and is protected from adsorption of impurities by embedding the ferromagnetic fine line in a nonmagnetic atomic layer.
摘要:
An n-type TFT and a p-type TFT are realized by selectively changing only a cover coat without changing a TFT material using an equation for applying the magnitude of a difference in the Fermi energy between an interface of semiconductor and an electrode and between an interface of semiconductor and insulator. At this time, in order to configure a predetermined circuit, the process is performed, as a source electrode and a drain electrode of the p-type TFT and a source electrode and a drain electrode of the n-type TFT being connected all, respectively, and an unnecessary interconnection is cut by irradiating light using a scanning laser exposure apparatus or the like.
摘要:
A rechargeable lithium battery includes an anode doped with lithium ions in an amount corresponding to the irreversible capacity. The anode is produced by applying lithium ions to an anodic active carbonaceous material. The anode may be produced by applying a slurry of the anodic active material composition containing a carbonaceous material to an anodic collector, drying and compression-molding the resulting article, and applying lithium ions to the molded article. Alternatively, the lithium-doped anode may be produced by applying lithium ions in the production of a carbonaceous material to yield a carbonaceous material containing lithium ions, and mixing the same with a carbonaceous material containing no lithium ions. The resulting rechargeable lithium battery using, for example, amorphous carbon as an anodic active material and a lithium transition metal compound as a cathodic active material shows a reduced irreversible capacity.