Abstract:
A semiconductor device having favorable electrical characteristics is provided. The semiconductor device includes an oxide semiconductor, a first insulator in contact with the oxide semiconductor, and a second insulator in contact with the first insulator. The first insulator includes excess oxygen. The second insulator has a function of trapping or fixing hydrogen. Hydrogen in the oxide semiconductor is bonded to the excess oxygen. The hydrogen bonded to the excess oxygen passes through the first insulator and is trapped or fixed in the second insulator. The excess oxygen bonded to the hydrogen remains in the first insulator as the excess oxygen.
Abstract:
To provide a transistor having a high on-state current. A semiconductor device includes a first insulator containing excess oxygen, a first oxide semiconductor over the first insulator, a second oxide semiconductor over the first oxide semiconductor, a first conductor and a second conductor which are over the second oxide semiconductor and are separated from each other, a third oxide semiconductor in contact with side surfaces of the first oxide semiconductor, a top surface and side surfaces of the second oxide semiconductor, a top surface of the first conductor, and a top surface of the second conductor, a second insulator over the third oxide semiconductor, and a third conductor facing a top surface and side surfaces of the second oxide semiconductor with the second insulator and the third oxide semiconductor therebetween. The first oxide semiconductor has a higher oxygen-transmitting property than the third oxide semiconductor.
Abstract:
A semiconductor device having a reduced amount of oxygen vacancy in a channel formation region of an oxide semiconductor is provided. Further, a semiconductor device which includes an oxide semiconductor and has improved electric characteristics is provided. Furthermore, a methods for manufacturing the semiconductor device is provided. An oxide semiconductor film is formed; a conductive film is formed over the oxide semiconductor film at the same time as forming a low-resistance region between the oxide semiconductor film and the conductive film; the conductive film is processed to form a source electrode and a drain electrode; and oxygen is added to the low-resistance region between the source electrode and the drain electrode, so that a channel formation region having a higher resistance than the low-resistance region is formed and a first low-resistance region and a second low-resistance region between which the channel formation region is positioned are formed.
Abstract:
To provide a transistor having a high on-state current. A semiconductor device includes a first insulator containing excess oxygen, a first oxide semiconductor over the first insulator, a second oxide semiconductor over the first oxide semiconductor, a first conductor and a second conductor which are over the second oxide semiconductor and are separated from each other, a third oxide semiconductor in contact with side surfaces of the first oxide semiconductor, a top surface and side surfaces of the second oxide semiconductor, a top surface of the first conductor, and a top surface of the second conductor, a second insulator over the third oxide semiconductor, and a third conductor facing a top surface and side surfaces of the second oxide semiconductor with the second insulator and the third oxide semiconductor therebetween. The first oxide semiconductor has a higher oxygen-transmitting property than the third oxide semiconductor.
Abstract:
A semiconductor device includes a first conductor; a first insulator thereover; a first oxide thereover; a second oxide thereover; a second conductor and a third conductor that are separate from each other thereover; a third oxide over the first insulator, the second oxide, the second conductor, and the third conductor; a second insulator thereover; a fourth conductor thereover; and a third insulator over the first insulator, the second insulator, and the fourth conductor. The second oxide includes a region where the energy of the conduction band minimum of an energy band is low and a region where the energy of the conduction band minimum of the energy band is high. The energy of the conduction band minimum of the third oxide is higher than that of the region of the second oxide where the energy of the conduction band minimum is low. Side surfaces of the first oxide and the second oxide are covered with the third oxide.
Abstract:
A transistor with stable electrical characteristics is provided. The transistor includes a first insulator over a substrate; first to third oxide insulators over the first insulator; a second insulator over the third oxide insulator; a first conductor over the second insulator; and a third insulator over the first conductor. An energy level of a conduction band minimum of each of the first and second oxide insulators is closer to a vacuum level than that of the oxide semiconductor is. An energy level of a conduction band minimum of the third oxide insulator is closer to the vacuum level than that of the second oxide insulator is. The first insulator contains oxygen. The number of oxygen molecules released from the first insulator measured by thermal desorption spectroscopy is greater than or equal to 1E14 molecules/cm2 and less than or equal to 1E16 molecules/cm2.
Abstract translation:提供具有稳定电特性的晶体管。 晶体管包括在衬底上的第一绝缘体; 第一绝缘子上的第一至第三绝缘体; 在所述第三氧化物绝缘体上的第二绝缘体; 第二绝缘体上的第一导体; 以及在第一导体上的第三绝缘体。 每个第一和第二氧化物绝缘体的导带最小值的能级比氧化物半导体的能级更接近真空度。 第三氧化物绝缘体的导带最小值的能级比第二氧化物绝缘体的能级更接近真空度。 第一绝缘体包含氧。 通过热解吸光谱测定从第一绝缘体释放的氧分子的数量大于或等于1E14分子/ cm 2且小于或等于1E16分子/ cm 2。
Abstract:
Provided is a semiconductor device having a structure with which a decrease in electrical characteristics that becomes more significant with miniaturization can be suppressed. The semiconductor device includes a first oxide semiconductor film, a gate electrode overlapping with the first oxide semiconductor film, a first gate insulating film between the first oxide semiconductor film and the gate electrode, and a second gate insulating film between the first gate insulating film and the gate electrode. In the first gate insulating film, a peak appears at a diffraction angle 2θ of around 28° by X-ray diffraction. A band gap of the first oxide semiconductor film is smaller than a band gap of the first gate insulating film, and the band gap of the first gate insulating film is smaller than a band gap of the second gate insulating film.
Abstract:
A manufacturing method of a semiconductor device in which the threshold voltage is adjusted is provided. The semiconductor device includes a first semiconductor, an electrode electrically connected to the first semiconductor, a gate electrode, and an electron trap layer between the gate electrode and the first semiconductor. By performing heat treatment at higher than or equal to 125° C. and lower than or equal to 450° C. and, at the same time, keeping a potential of the gate electrode higher than a potential of the electrode for 1 second or more, the threshold voltage is increased.
Abstract:
A novel display device that is highly convenient, useful, or reliable is provided. The display apparatus includes a first light-emitting device, a second light-emitting device, and a first layer. The first light-emitting device includes a first electrode, a second electrode, a first unit between the first electrode and the second electrode, and a second layer between the first electrode and the first unit. The first unit includes a first light-emitting material. The second light-emitting device includes a third electrode, a fourth electrode, a second unit between the third electrode and the fourth electrode, and a third layer between the third electrode and the second unit. The second unit includes a second light-emitting material. The first layer is between the first electrode and the second layer and between the third electrode and the third layer, and overlaps with a first gap between the first electrode and the third electrode.
Abstract:
A display device with high display quality is provided. A highly reliable display device is provided. A display device with low power consumption is provided. A display device that can easily achieve a higher resolution is provided. A display device with both high display quality and a high resolution is provided. A display device with high contrast is provided. The display device includes a first pixel, a second pixel arranged to be adjacent to the first pixel, and a first insulating layer; the first pixel includes a first pixel electrode, a first EL layer over the first pixel electrode, and a common electrode over the first EL layer; the second pixel includes a second pixel electrode, a second EL layer over the second pixel electrode, and the common electrode over the second EL layer; a side surface of the first EL layer and a side surface of the second EL layer each include a region in contact with the first insulating layer; a side surface of the first pixel electrode is covered with the first EL layer; and a side surface of the second pixel electrode is covered with the second EL layer.