Abstract:
Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a first metal gate stack and a second metal gate stack over a semiconductor substrate. The semiconductor device structure also includes a dielectric layer surrounding the first metal gate stack and the second metal gate stack. The semiconductor device structure further includes an insulating structure between the first metal gate stack and the second metal gate stack. The insulating structure has a first convex surface facing towards the first metal gate stack.
Abstract:
A method of forming a semiconductor device includes forming a first fin and a second fin protruding above a substrate; forming isolation regions on opposing sides of the first fin and the second fin; forming a metal gate over the first fin and over the second fin, the metal gate being surrounded by a first dielectric layer; and forming a recess in the metal gate between the first fin and the second fin, where the recess extends from an upper surface of the metal gate distal the substrate into the metal gate, where the recess has an upper portion distal the substrate and a lower portion between the upper portion and the substrate, where the upper portion has a first width, and the lower portion has a second width larger than the first width, the first width and the second width measured along a longitudinal direction of the metal gate.
Abstract:
Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
Abstract:
An IC device manufacturing process effectuates a planar recessing of material that initially varies in height across a substrate. The method includes forming a bottom anti-reflective coating (BARC), baking to induce cross-linking in the BARC, CMP to remove a first portion of the BARC and form a planar surface, then plasma etching to effectuate a planar recessing of the BARC. The plasma etching can have a low selectivity between the BARC and the material being recessed, whereby the BARC and the material are recessed simultaneously. Any of the material above a certain height is removed. Structures that are substantially below that certain height can be protected from contamination and left intact. The method can be particularly effective when an abrasive used during CMP forms ester linkages with the BARC.