摘要:
A method of fabricating a thin film transistor on an insulating substrate such as quartz or glass without defect in the channel region in semiconductor thin layer, or at the boundary between the semiconductor thin layer and gate insulation layer, but with high mobility and high integration. For that purpose, ions produced by the discharge-decomposition of a hydride gas including dopant are accelerated and implanted into the semiconductor thin layer, wherein the protecting insulation layer for protection of the channel region is of a thickness larger than the projected range of the hydrogen ion.
摘要:
A junction-type FET comprising a semiconductor substrate 21 of a first conductivity type, and island region 22 of a second conductivity type which comprises a channel region and is selectively formed in the semiconductor substrate 21, and a buried isolating region 27 which is selected from the group consisting of an intrinsic layer, a low impurity concentration layer of the second conductivity type and a layer of first conductivity type, the buried isolating layer being formed by ion implantation of impurities of the first conductivity type in the island region 22 while keeping the impurity concentration at the surface thereof relatively high, and the buried isolating layer substantially isolating the channel region from the surface.
摘要:
According to one embodiment, a memory system includes a data manager and a data restorer. The data manager multiplexes difference logs by a parallel writing operation and stores them in a second storage area, the difference logs being difference logs indicating difference information before and after update of a management table; and thereafter multiplexes predetermined data as finalizing logs and stores them in the second storage area. The data restorer determines a system status at startup of the memory system, by judging whether irregular power-off occurs or data destruction occurs in the second storage area, based on a data storage state of the difference logs and the finalizing logs stored in the second storage area.
摘要:
A manufacturing method of a semiconductor device includes forming an oxide semiconductor thin film layer of zinc oxide, wherein at least a portion of the oxide semiconductor thin film layer in an as-deposited state includes lattice planes having a preferred orientation along a direction perpendicular to the substrate and a lattice spacing d002 of at least 2.619 Å.
摘要:
A manufacturing method of a thin film transistor includes forming a pair of source/drain electrodes on a substrate, such that the source/drain electrodes define a gap therebetween; forming low resistance conductive thin films, which define a gap therebetween, on the source/drain electrodes; and forming an oxide semiconductor thin film layer on upper surface of the low resistance conductive thin films and in the gap defined between the low resistance conductive thin films so that the oxide semiconductor thin film layer functions as a channel. The low resistance conductive thin films and the oxide semiconductor thin film layer are etched so that side surfaces of the resistance conductive thin films and corresponding side surfaces of the oxide semiconductor thin film layer coincide with each other in a channel width direction of the channel. A gate electrode is mounted over the oxide semiconductor thin film layer.
摘要:
A thin film transistor includes a substrate, and a pair of source/drain electrodes (i.e., a source electrode and a drain electrode) formed on the substrate and defining a gap therebetween. A pair of low resistance conductive thin films are provided such that each coats at least a part of one of the source/drain electrodes. The low resistance conductive thin films define a gap therebetween. An oxide semiconductor thin film layer is continuously formed on upper surfaces of the pair of low resistance conductive thin films and extends along the gap defined between the low resistance conductive thin films so as to function as a channel. Side surfaces of the oxide semiconductor thin film layer and corresponding side surfaces of the low resistance conductive thin films coincide with each other in a channel width direction of the channel.
摘要:
The object of the present invention is to provide a treatment method to remove lattice defects and non-diamond elements that exist in a diamond or a diamond thin film.The treatment method whereby the aforementioned object is achieved is to have the diamond or the diamond thin film irradiated by ultra-violet light or heated in an oxygen ambient.According to said treatment method, it has become possible to obtain a diamond or a diamond thin film that is free from the adverse effects of lattice defects and non-diamond elements.
摘要:
The method for forming a silicon film of this invention includes the steps of introducing a compound containing silicon and chlorine and being in a liquid form under normal pressure and at an ordinary temperature into a reaction chamber, and spraying the compound in the liquid form in a fine particle state to a surface of a substrate supported in the reaction chamber, and decomposing the compound in the fine particle state by energy applied from outside of the reaction chamber, and depositing a silicon film on the substrate supported in the reaction chamber.
摘要:
A small and highly sensitive capacitance type pressure sensor is obtained by filling an alkali halide material such as KBr into a through-hole, forming a conductive thin film on the surface, and dissolving and removing the alkali halide material. An insulating plate disposed with a through-hole in the thickness direction is filled with a molten alkali halide material such as KBr. After forming a conductive thin film on the surface of the alkali halide material filled into the through-hole and the vicinity thereof, the alkali halide material is dissolved by water and removed. In this way, a diaphragm is made of the through-hole and the conductive thin film. A curve of the diaphragm caused by a pressure difference between the both faces of the conductive thin film is detected as a capacitance change between the conductive thin film and the electrode layer.
摘要:
A method whereby perovskite type oxide dielectric thin films with ABO.sub.3 structure are able to be formed with such features as good stability, uniformity, reproducibility, or the like, with high through-put by having a deposition process, wherein the thin films are deposited on a substrate, and a stabilization process, where no deposition of the thin films takes place, repeated alternatingly while the substrate temperature being kept near the temperature at which perovskite type oxide dielectric thin films are formed. Also, by employing (i) a processing method wherein a decomposing excitation of a reactive gas due to plasma takes place on or near the deposition surface in a gaseous atmosphere comprising a gas that reacts with the elements composing the thin films, (ii) a processing method wherein an oxidation reaction takes place on the deposition surface in a gaseous atmosphere comprising at least ozone (O.sub.3), and (iii) a processing method wherein light of short wave length is irradiated on the deposition surface in a gaseous atmosphere comprising at least reactive elements in the non-deposition process, the oxygen concentration in the deposited thin films is adjusted and dielectric thin films of good quality and an extremely low defect content are realized.