摘要:
A powertrain for a hybrid electric vehicle (HEV) such as a plug-in hybrid electric vehicle (PHEV) includes an engine, a fuel tank, a battery, and a controller. The controller is configured to determine a distance to empty value as a sum of fuel in the fuel tank and a battery equivalent amount of fuel, the sum multiplied by an average fuel economy of the PHEV based on a driving condition of the vehicle.
摘要:
A cable connector (100) includes an insulative housing (1), a plurality of contacts (2) retained in the insulative housing (1) and a cable (3) connecting to the contacts (2). The insulative housing (1) includes a first body (11) and a positioning block (13). The first body (11) has a number of inserting slots (1331) passing downwardly therethrough. The positioning block (13) has a plurality of receiving passageways (1301) passing therethrough along a front-to-back direction to retain to the cable (3) therein. The contacts (2) each has a sharp top end (21). The positioning block (13) is retained in the first body (11) downwardly. The sharp top ends (21) of the contacts (2) pierce the cable (3) to connect with the cable (3) reliably.
摘要:
A method and system for providing a dynamic torque band for hybrid electric vehicle (HEV) transient management includes determining a torque band indicative of an engine torque operation region representing efficient operation of the powertrain across a range of engine speeds. An engine torque command based on an actual speed of the engine is generated. The engine torque command is outputted to the engine if the engine torque command is within the torque band. The engine torque command is modified to be within the torque band if the engine torque command is out of the torque band and the modified engine torque command is outputted to the engine.
摘要:
A hybrid vehicle and method of control. The method includes determining an engine torque command based on a request for vehicle acceleration or deceleration, a target power level of the secondary power source, and a current engine power command, determining an engine speed command based on the target power level of the secondary power source, a total engine power command, and vehicle speed, and operating the engine based on the engine torque and engine speed commands.
摘要:
A hybrid vehicle and method of control are associated with the following operation. A quantized previous engine power command based on a previous engine power command is obtained. A current engine power command is quantized. The quantized current engine power command is maintained if the magnitude of the difference between the current engine power command and the quantized previous engine power command is larger than a threshold. The quantized current engine power command is set equal to the quantized previous engine power command if the magnitude of the difference between the current engine power command and the quantized previous engine power command is smaller than the threshold. An output engine power command based on the quantized current engine power command is generated. An engine of the hybrid vehicle is operated based on the output engine power command.
摘要:
A vehicle powertrain includes an engine, an electric machine operable to output torque to at least one vehicle wheel, and an electric power source operable to provide electric power to the electric machine. A method for optimizing powertrain efficiency includes generating a plurality of three-dimensional maps of optimized engine speeds for combinations of vehicle power and vehicle speed at a plurality of predetermined powers of the electrical power source. Each of the maps corresponds to one of the predetermined powers of the electrical power source. The maps are used to determine an optimized engine speed for a given power of the electrical power source, a given vehicle power and a given vehicle speed.
摘要:
A method and system for limiting a fast transient in an engine in a hybrid vehicle is provided. The predicted fuel loss percentage is calculated from an inferred air-fuel ratio (inferred lambda). The rate limit term is calculated from a measured air-fuel ratio (measured lambda) and an engine torque command change rate. The predicted fuel loss percentage and the rate limit term are inputs into a calibration table to determine an engine power rate limit and an engine torque rate limit. An engine torque command is limited using the engine torque rate limit to control a fast engine torque transient for an engine. An engine power command is limited using the engine power rate limit to control the fast engine power transient for the engine.
摘要:
A hybrid vehicle and method of control. The method includes determining an engine torque command based on a request for vehicle acceleration or deceleration, a target power level of the secondary power source, and a current engine power command, determining an engine speed command based on the target power level of the secondary power source, a total engine power command, and vehicle speed, and operating the engine based on the engine torque and engine speed commands.
摘要:
This invention concerns a lithium rechargeable electrochemical cell containing electrochemical redox active compounds in the electrolyte. The cell is composed of two compartments, where the cathodic compartment comprises a cathodic lithium insertion material and one or more of p-type redox active compound(s) in the electrolyte; the anodic compartment comprises an anodic lithium insertion material and one or more of n-type redox active compound(s) in the electrolyte. These two compartments are separated by a separator and the redox active compounds are confined only in each compartment. Such a rechargeable electrochemical cell is suitable for high energy density applications. The present invention also concerns the general use of redox active compounds and electrochemically addressable electrode systems containing similar components which are suitable for use in the electrochemical cell.
摘要:
A unique combination of solution stabilization and delivery technologies with special ALD operation is provided. A wide range of low volatility solid ALD precursors dissolved in solvents are used. Unstable solutes may be stabilized in solution and all of the solutions may be delivered at room temperature. After the solutions are vaporized, the vapor phase precursors and solvents are pulsed into a deposition chamber to assure true ALD film growth.