摘要:
A ferroelectric thin film resistor memory array is formed on a substrate and includes plural memory cells arranged in an array of rows and columns; wherein each memory cell includes: a FE resistor having a pair of terminals, and a transistor associated with each resistor, wherein each transistor has a gate, a drain and a source, and wherein the drain of each transistor is electrically connected to one terminal of its associated resistor; a word line connected to the gate of each transistor in a row; a programming line connected to each memory cell in a column; and a bit line connected to each memory cell in a column.
摘要:
The ferroelectric structure including a Pt/Ir layered electrode used in conjunction with a lead germanate (Pb5Ge3O11) thin film is provided. The electrode exhibits good adhesion to the substrate, and barrier properties resistant to oxygen and lead. Ferroelectric properties are improved, without detriment to the leakage current, by using a thin IrO2 layer formed in situ, during the MOCVD lead germanate (Pb5Ge3O11) thin film process. By using a Pt/Ir electrode, a relatively low MOCVD processing temperature is required to achieve c-axis oriented lead germanate (Pb5Ge3O11) thin film. The temperature range of MOCVD c-axis oriented lead germanate (Pb5Ge3O11) thin film on top of Pt/Ir is 400-500° C. Further, a relatively large nucleation density is obtained, as compared to using single-layer iridium electrode. Therefore, the lead germanate (Pb5Ge3O11) thin film has a smooth surface, a homogeneous microstructure, and homogeneous ferroelectric properties. A method of forming the above-mentioned multi-layered electrode ferroelectric structure is also provided.
摘要:
A method of forming a ferroelectric thin film on a high-k layer includes preparing a silicon substrate; forming a high-k layer on the substrate; depositing a seed layer of ferroelectric material at a relatively high temperature on the high-k layer; depositing a top layer of ferroelectric material on the seed layer at a relatively low temperature; and annealing the substrate, the high-k layer and the ferroelectric layers to form a ferroelectric thin film.
摘要:
A method of making a ferroelectric memory transistor includes preparing a silicon substrate including forming plural active areas thereon; depositing a layer of gate insulator on the substrate, and depositing a layer of polysilicon over the gate insulator layer; forming a source region, a drain region and a gate electrode; depositing a layer of bottom electrode material and finishing the bottom electrode without damaging the underlying gate insulator and silicon substrate; depositing a layer of ferroelectric material on the bottom electrode; depositing a layer of top electrode material on the ferroelectric material; and finishing the transistor, including passivation oxide deposition, contact hole etching and metalization.
摘要:
A ferroelectric transistor gate structure with a ferroelectric gate and passivation sidewalls is provided. The passivation sidewalls serve as an insulator to reduce, or eliminate, the diffusion of oxygen or hydrogen into the ferroelectric gate. A method of forming the ferroelectric gate structure is also provided. The method comprises the steps of forming a sacrificial gate structure, removing the sacrificial gate structure, depositing passivation insulator material, etching the passivation insulator material using anisotropic plasma etching to form passivation sidewalls, depositing a ferroelectric material, polishing the ferroelectric material using CMP, and forming a top electrode overlying the ferroelectric material.
摘要:
A Pb3GeO5 phase PGO thin film is provided. This film has ferroelastic properties that make it ideal for many microelectromechanical applications or as decoupling capacitors in high speed multichip modules. This PGO film is uniquely formed in a MOCVD process that permits a thin film, less than 1 mm, of material to be deposited. The process mixes Pd and germanium in a solvent. The solution is heated to form a precursor vapor which is decomposed. The method provides deposition temperatures and pressures. The as-deposited film is also annealed to enhanced the film's ferroelastic characteristics. A ferroelastic capacitor made from the present invention PGO film is also provided.
摘要:
The present invention provides a substantially single crystal PGO film with optimal the ferroelectric properties. The PGO film and adjacent electrodes are epitaxially grown to minimize mismatch between the structures. MOCVD deposition methods and RTP annealing procedures permit a PGO film to be epitaxially grown in commercial fabrication processes. These epitaxial ferroelectric have application in FeRAM memory devices. The present invention deposition method epitaxially grows ferroelectric Pb5Ge3O11 thin films along with c-axis orientation.
摘要:
A method of fabricating an electroluminescent device includes, on a prepared substrate, depositing a rare earth-doped silicon-rich layer on gate oxide layer as a light emitting layer; and annealing and oxidizing the structure to repair any damage caused to the rare earth-doped silicon-rich layer; and incorporating the electroluminescent device into a CMOS IC. An electroluminescent device fabricated according to the method of the invention includes a substrate, a rare earth-doped silicon-rich layer formed on the gate oxide layer for emitting a light of a pre-determined wavelength; a top electrode formed on the rare earth-doped silicon-rich layer; and associated CMOS IC structures fabricated thereabout.
摘要:
A multi-layer PrxCa1-xMnO3 (PCMO) thin film capacitor and associated deposition method are provided for forming a bipolar switching thin film. The method comprises: forming a bottom electrode; depositing a nanocrystalline PCMO layer; depositing a polycrystalline PCMO layer; forming a multi-layer PCMO film with bipolar switching properties; and, forming top electrode overlying the PCMO film. If the polycrystalline layers are deposited overlying the nanocrystalline layers, a high resistance can be written with narrow pulse width, negative voltage pulses. The PCMO film can be reset to a low resistance using a narrow pulse width, positive amplitude pulse. Likewise, if the nanocrystalline layers are deposited overlying the polycrystalline layers, a high resistance can be written with narrow pulse width, positive voltage pulses, and reset to a low resistance using a narrow pulse width, negative amplitude pulse.
摘要:
A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.