摘要:
A variable-resistance material memory (VRMM) device includes a container conductor disposed over an epitaxial semiconductive prominence that is coupled to a VRMM. A VRMM device may also include a conductive plug in a recess that is coupled to a VRMM. A VRMM array may also include a conductive plug in a surrounding recess that is coupled to a VRMM. Apparatuses include the VRMM with one of the diode constructions.
摘要:
Some embodiments include apparatus and methods having a memory element configured to store information and an access component configured to allow conduction of current through the memory element when a first voltage difference in a first direction across the memory element and the access component exceeds a first voltage value and to prevent conduction of current through the memory element when a second voltage difference in a second direction across the memory element and the access component exceeds a second voltage value, wherein the access component includes a material excluding silicon.
摘要:
In one embodiment, a floating body field-effect transistor includes a pair of source/drain regions having a floating body channel region received therebetween. The source/drain regions and the floating body channel region are received over an insulator. A gate electrode is proximate the floating body channel region. A gate dielectric is received between the gate electrode and the floating body channel region. The floating body channel region has a semiconductor SixGe(1-x)-comprising region. The floating body channel region has a semiconductor silicon-comprising region received between the semiconductor SixGe(1-x)-comprising region and the gate dielectric. The semiconductor SixGe(1-x)-comprising region has greater quantity of Ge than any quantity of Ge within the semiconductor silicon-comprising region. Other embodiments are contemplated, including methods of forming floating body field-effect transistors.
摘要:
In one embodiment, a floating body field-effect transistor includes a pair of source/drain regions having a floating body channel region received therebetween. The source/drain regions and the floating body channel region are received over an insulator. A gate electrode is proximate the floating body channel region. A gate dielectric is received between the gate electrode and the floating body channel region. The floating body channel region has a semiconductor SixGe(1-x)-comprising region. The floating body channel region has a semiconductor silicon-comprising region received between the semiconductor SixGe(1-x)-comprising region and the gate dielectric. The semiconductor SixGe(1-x)-comprising region has greater quantity of Ge than any quantity of Ge within the semiconductor silicon-comprising region. Other embodiments are contemplated, including methods of forming floating body field-effect transistors.
摘要:
3D memory devices are disclosed, such as those that include multiple two-dimensional tiers of memory cells. Each tier may be fully or partially formed over a previous tier to form a memory device having two or more tiers. Each tier may include strings of memory cells where each of the strings are coupled between a source select gate and a drain select gate such that each tier is decoded using the source/drain select gates. Additionally, the device can include a wordline decoder for each tier that is only coupled to the wordlines for that tier.
摘要:
Memory devices having memory cells comprising variable resistance material include an electrode comprising a single nanowire. Various methods may be used to form such memory devices, and such methods may comprise establishing contact between one end of a single nanowire and a volume of variable resistance material in a memory cell. Electronic systems include such memory devices.
摘要:
Some embodiments include apparatus and methods having a memory cell with a first electrode and a second electrode, and a memory element directly contacting the first and second electrodes. The memory element may include a programmable portion having a material configured to change between multiple phases. The programmable portion may be isolated from the first electrode by a first portion of the memory element and isolated from the second electrode by a second portion of the memory element.
摘要:
Some embodiments include apparatus and methods having a memory device with diodes coupled to memory elements. Each diode may be formed in a recess of the memory device. The recess may have a polygonal sidewall. The diode may include a first material of a first conductivity type (e.g., n-type) and a second material of a second conductive type (e.g., p-type) formed within the recess.
摘要:
In one implementation, a method of forming a field effect transistor includes etching an opening into source/drain area of a semiconductor substrate. The opening has a base comprising semiconductive material. After the etching, insulative material is formed within the opening over the semiconductive material base. The insulative material less than completely fills the opening and has a substantially uniform thickness across the opening. Semiconductive source/drain material is formed within the opening over the insulative material within the opening. A transistor gate is provided operatively proximate the semiconductive source/drain material. Other aspects and implementations are contemplated.
摘要:
In one implementation, a method of forming a field effect transistor includes etching an opening into source/drain area of a semiconductor substrate. The opening has a base comprising semiconductive material. After the etching, insulative material is formed within the opening over the semiconductive material base. The insulative material less than completely fills the opening and has a substantially uniform thickness across the opening. Semiconductive source/drain material is formed within the opening over the insulative material within the opening. A transistor gate is provided operatively proximate the semiconductive source/drain material. Other aspects and implementations are contemplated.