Abstract:
A FinFET is provided. The FinFET includes a substrate. A plurality of fin structures are defined on the substrate. A gate structure crosses each fin structure. Two first recesses are disposed on two sides of the gate structure respectively, wherein each first recess further includes a plurality of second recesses disposed therein, and the position of each second recess corresponds to each fin structure. Two epitaxial layers are disposed at two sides of the gate structure respectively and in the first recesses, each epitaxial layer has a bottom surface including a second concave and convex profile, and each epitaxial layer directly contacts a bottom surface of each first recess and a bottom surface of each second recess.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming an ultra low-k (ULK) dielectric layer on the substrate; forming a hard mask on the ULK dielectric layer; forming an opening in the hard mask and the ULK dielectric layer; forming a conductive layer in the opening and on the hard mask; planarizing the conductive layer; and removing the hard mask to expose the ULK dielectric layer so that the top surface of the ULK dielectric layer is lower than the top surface of the conductive layer.
Abstract:
The present invention provides a semiconductor device, including a substrate, a first semiconductor layer, a plurality of first sub recess, a plurality of insulation structures and a first top semiconductor layer. The substrate has a first region disposed within an STI. The first semiconductor layer is disposed in the first region. The first sub recesses are disposed in the first semiconductor layer. The insulation structures are disposed on the first semiconductor layer. The first top semiconductor layer forms a plurality of fin structures, which are embedded in the first sub recesses, arranged alternatively with the insulation structures and protruding over the insulation structures.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, a first fin-shaped structure and a bump are formed on the substrate, and an insulating layer is formed on the bump and around the first fin-shaped structure. Next, a part of the first fin-shaped structure is removed, an epitaxial layer is formed on the first fin-shaped structure, part of the epitaxial layer is removed, and part of the insulating layer is removed to form a shallow trench isolation (STI) and a second fin-shaped structure protruding from the STI. Preferably, the second fin-shaped structure includes a top portion and a bottom portion, in which the bottom portion and the bump are made of same material.
Abstract:
An illumination system includes a light source used to generate a light and an opaque plate. The opaque plate is disposed between the light source and a photomask and includes an annular aperture and an aperture dipole. The annular aperture has an inner side and an outer side. The aperture dipole includes at least one first aperture and at least one second aperture. The first aperture and the second aperture connected to the annular aperture respectively and protruding out from the outer side of the annular aperture are disposed symmetrically with respect to a center of the annular aperture.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a plurality of fin-shaped structures thereon; forming a first shallow trench isolation (STI) between the fin-shaped structures and a second STI around the fin-shaped structures; removing part of the fin-shaped structures; and removing part of the first STI so that the top surfaces of the fin-shaped structures are higher than the top surface of the first STI and lower than the top surface of the second STI.
Abstract:
A semiconductor device and a method of forming the same, the semiconductor device includes a substrate, a plurality of fin shaped structures and an insulating layer. The substrate has a fin field-effect transistor (finFET) region, a first region, a second region and a third region. The first region, the second region and the third region have a first surface, a second surface, and a third surface, respectively, where the first surface is relatively higher than the second surface and the second surface is relatively higher than the third surface. The fin shaped structures are disposed on a surface of the fin field-effect transistor region. The insulating layer covers the first surface, the second surface and the third surface.
Abstract:
A fin field effect transistor (FinFET) with improved electrical performance and a method of manufacturing the same are disclosed. A FinFET includes a substrate having a top surface and an insulation. At least a recessed fin is extended upwardly from the top surface of the substrate, and at least a gate stack is formed above the substrate, wherein the gate stack is extended perpendicularly to an extending direction of the recessed fin, and the recessed fin is outside the gate stack. The insulation includes a lateral portion adjacent to the recessed fin, and a central portion contiguous to the lateral portion, wherein a top surface of the lateral portion is higher than a top surface of the central portion. A top surface of the recessed fin is lower than the top surface of the central portion of the insulation.
Abstract:
A method for fabricating a semiconductor device comprises: Firstly, a semiconductor fin comprising a first sub-fin and a second sub-fin protruding from a surface of a substrate is provided. An isolation structure having an opening extending therein is then provided in the semiconductor fin to electrically isolate the first sub-fin and the second sub-fin. Subsequently, a first dummy structure disposed on the first isolation structure and having at least one metal layer entirely overlapping on the first isolation structure along a long axis of the semiconductor fin is formed, wherein the metal layer laterally conformally extends downwards into the opening and extends upwards beyond the first isolation structure along the long axis of the semiconductor fin, so as to form a stepped structure overlapping on sidewalls and a bottom of the opening, a portion of the first sub-fin and a portion of the second sub-fin.
Abstract:
A method for manufacturing a semiconductor device having metal gate includes following steps. A substrate is provided. At least a transistor including a dummy gate is formed on the substrate and the transistor is embedded in an interlayer dielectric (ILD) layer. A first removal process is performed to remove a portion of the dummy gate to form a first recess in the transistor. An etching process is subsequently performed to remove a portion of the ILD layer to widen the first recess and to form a widened first recess. A second removal process is subsequently performed to remove the dummy gate entirely and to form a second recess in the transistor. A metal gate is formed in the second recess and followed by forming an insulating cap layer on the metal gate.