摘要:
A field effect transistor (FET) is formed on a silicon substrate, with a nitride gate insulator layer being deposited on the substrate and an oxide gate insulator layer being deposited on the nitride layer to insulate a gate electrode from source and drain regions in the substrate. The gate material is then removed to establish a gate void, and spacers are deposited on the sides of the void such that only a portion of the oxide layer is covered by the spacers. Then, the unshielded portion of the oxide layer is removed, thus establishing a step between the oxide and nitride layers that overlays the source and drain extensions under the gate void to reduce subsequent capacitive coupling and charge carrier tunneling between the gate and the extensions. The spacers are removed and the gate void is refilled with gate electrode material.
摘要:
A silicon-on-insulator (SOI) transistor. The SOI transistor having a source and a drain having a body disposed therebetween, the source being implanted with germanium to form an area of silicon-germanium adjacent a source/body junction in a lower portion of the source, the area of silicon-germanium in the source forming a hetero junction along a lower portion of the source/body junction.
摘要:
A method of forming a semiconductor-on-insulator (SOI) wafer. The method includes the steps of providing a first wafer, the first wafer having a silicon substrate and an oxide layer disposed thereon; providing a second wafer, the second wafer having a silicon substrate, the substrate of the second wafer having a silicon-germanium layer disposed thereon, a silicon layer disposed on the silicon-germanium layer and an oxide layer disposed on the silicon layer; wafer bonding the first and second wafers; and removing an undesired portion of the substrate from the second wafer to form an upper silicon layer. The resulting SOI wafer structure is also disclosed.
摘要:
The inventive method provides improved semiconductor devices, such as MOSFET's with raised source/drain extensions on a substrate with isolation trenches etched into the surface of the substrate. The inventive method provides thin first dielectric spacers on the side of a gate and gate oxide and extend from the top of the gate to the surface of the substrate. Raised source/drain extensions are placed on the surface of a substrate, which extend from the first dielectric spacers to the isolation trenches. Thicker second dielectric spacers are placed adjacent to the first dielectric spacers and extend from the top of the first dielectric spacers to the raised source/drain extensions. Raised source/drain regions are placed on the raised source/drain extensions, and extend from the isolation trenches to the second dielectric spacers. The inventive semiconductor devices provide for very shallow source drain extensions which results in a reduced short channel effect.
摘要:
An asymmetric double gate metal-oxide semiconductor field-effect transistor (MOSFET) includes a first fin formed on a substrate; a second fin formed on the substrate; a first gate formed adjacent first sides of the first and second fins, the first gate being doped with a first type of impurity; and a second gate formed between second sides of the first and second fins, the second gate being doped with a second type of impurity. An asymmetric all-around gate MOSFET includes multiple fins; a first gate structure doped with a first type of impurity and formed adjacent a first side of one of the fins; a second gate structure doped with the first type of impurity and formed adjacent a first side of another one of the fins; a third gate structure doped with a second type of impurity and formed between two of the fins; and a fourth gate structure formed at least partially beneath one or more of the fins.
摘要:
A silicon-on-insulator(SOI) transistor. The SOI transistor having a source and a drain having a body disposed therebetween, the source being implanted with germanium to form an area of silicon-germanium adjacent a source/body junction in a lower portion of the source, the area of silicon-germanium in the source forming a hereto junction along a lower portion of the source/body junction.
摘要:
A method of fabricating a silicon-on-insulator (SOI) chip having an active layer with a non-uniform thickness. The method includes the steps of providing a substrate; providing a buried oxide layer (BOX) on the substrate; providing an active layer on the BOX layer, the active layer having an initially uniform thickness; dividing the active layer into at least a first and a second tile; and altering the thickness of the active layer in the area of the second tile. The method also includes forming a plurality of partially depleted semiconductor devices from the active layer in the area of a thicker of the first and the second tiles and forming a plurality of fully depleted semiconductor devices from the active layer in the area of a thinner of the first and the second tiles.
摘要:
A silicon-on-insulator (SOI) chip. The SOI chip has a substrate; a buried oxide (BOX) layer disposed on the substrate; and an active layer disposed on the BOX layer, the active layer divided into a first and a second tile, the first tile having a first thickness and the second tile having a second thickness, the second thickness being smaller than the first thickness. Also disclosed is a method of fabricating a silicon-on-insulator (SOI) chip having an active layer with a non-uniform thickness. The method includes the steps of providing a substrate; providing a buried oxide layer (BOX) on the substrate; providing an active layer on the BOX layer, the active layer having an initially uniform thickness; dividing the active layer into at least a first and a second tile; and altering the thickness of the active layer in the area of the second tile.
摘要:
A method for forming one or more FinFET devices includes forming a source region and a drain region in an oxide layer, where the oxide layer is disposed on a substrate, and etching the oxide layer between the source region and the drain region to form a group of oxide walls and channels for a first device. The method further includes depositing a connector material over the oxide walls and channels for the first device, forming a gate mask for the first device, removing the connector material from the channels, depositing channel material in the channels for the first device, forming a gate dielectric for first device over the channels, depositing a gate material over the gate dielectric for the first device, and patterning and etching the gate material to form at least one gate electrode for the first device.
摘要:
A method of forming multiple fins in a semiconductor device includes forming a structure having an upper surface and side surfaces on the semiconductor device. The semiconductor device includes a conductive layer located below the structure. The method also includes forming spacers adjacent the structure and selectively etching the spacers and the conductive layer to form the fins. The fins may be used in a FinFET device.