Abstract:
The present invention relates to a compliant leaded interposer for resiliently attaching and electrically connecting a ball grid array package to a circuit board. The interposer may include a substrate, a plurality of pads, and a plurality of pins. The plurality of pads may be positioned substantially on the top surface of the substrate and arranged in a predetermined pattern substantially corresponding to the solder ball pattern on the ball grid array package. The plurality of pins may be positioned substantially perpendicular to the substrate and may extend through the substrate and the plurality of pads. The interposer may be configured to attach the ball grid array package to the circuit board such that each of the solder balls on the ball grid array package contacts at least a portion the plurality of pins and at least a portion of the plurality of pads and such that the each of the plurality of pins also connects to a contact on the circuit board.
Abstract:
A connector system is provided. The system includes a substantially circular interconnecting hub, and a plurality of circuit board bays configured substantially radially around the substantially circular interconnecting hub. Each circuit board bay has a plurality of aligned connectors configured to receive a circuit board. The interconnecting circuit hub has, for each individual circuit board bay, a direct data pathway connecting the individual circuit board bay to all remaining circuit board bays of the plurality of circuit board bays. Each of the plurality of circuit board bays can directly communicate through the interconnecting hub with each of the remaining circuit boards bays.
Abstract:
The present invention relates to a connector system for resiliently attaching and electrically connecting an integrated circuit chip to a circuit board using a plurality of leads. Each of the plurality of leads are sized and arranged to form a curved body having a first leg and a second leg with a curved portion between the first leg and the second leg. The curved body of the leads may be C-shaped in accordance with the present invention. The plurality of leads may be formed from strips of copper foil or copper mesh folded to form the curved body. The plurality of leads may also be sized and arranged to support the integrated circuit chip in a generally flat arrangement relative to the circuit board with a maximum separation of about 0.016 inches or less between the integrated circuit chip and the circuit board.
Abstract:
A global positioning system (GPS) receiver that is configured to rapidly acquire GPS signals in space applications and a method for rapidly acquiring GPS signals in space applications is disclosed. In an embodiment, the GPS receiver includes, but is not limited to, a GPS signal acquisition component comprising a time domain correlation module. The GPS signal acquisition component is adapted to acquire a GPS signal by receiving data from the GPS signal and processing the data to detect the GPS signal.
Abstract:
An interposer lead provides a connection between an integrated circuit and a circuit board. The interposer lead includes a first leg for interfacing with the circuit board. The interposer lead also includes a second leg disposed generally parallel to the first leg for interfacing with an IC electrical lead extending from the integrated circuit. A connecting portion operatively connects the first leg and the second leg. The interposer lead further includes a lip extending non-parallel from the second leg for limiting movement of the IC electrical lead on the second leg.
Abstract:
A method of determining a distance to an object is presented. A first photon and a second photon are simultaneously generated. The first photon is reflected off an object. The second photon is directed to an optical cavity. An arrival of the first photon is correlated with an arrival of the second photon, and the distance to the object is at least partially determined using the correlation.
Abstract:
A telemetry system is described in which a plurality of channels are coupled to a bus. A control subsystem controls the channels so that one of the channels presents to the bus during its designated time period a channel characteristic. The control subsystem interrogates in the analog domain each of the channels during its designated time period, and forms a signal representative of the channel characteristic. The control subsystem may combine one or more of the signals into a digital packet, and transmit the same over a network. Each channel in the telemetry system can include a sample-and-hold circuit, a variable resistor circuit, and a control element. The sample-and-hold circuit is configured to hold a sample of a signal. The variable resistor circuit is configured to present a variable impedance to one or more signal lines during a time period designated for the channel an impedance representative of the sample held by the sample-and-hold circuit. The control element is configured to control the variable resistor circuit to present to the one or more signal lines an open circuit equivalent impedance during times other than the time period designated for the channel. In some implementations, the channel also includes a switch which decouples the sample-and-hold circuit from the variable resistor circuit during times other than the time period designated for the channel. In some implementations, the control element is a programmable control element that is programmable with a unique channel identifier, and may include a timing element which is updated responsive to a control signal. The programmable control element determines that the designated time period for the channel is occurring or will occur based on a comparison of the contents of the timing element with the unique channel identifier. The control element can be a zero power control element.
Abstract:
A telemetry system is described in which a plurality of channels are coupled to a bus. A control subsystem controls the channels so that one of the channels presents to the bus during its designated time period a channel characteristic. The control subsystem interrogates in the analog domain each of the channels during its designated time period, and forms a signal representative of the channel characteristic. The control subsystem may combine one or more of the signals into a digital packet, and transmit the same over a network.
Abstract:
A system and method for rotating a source image by a first non-zero angle is provided. The method includes: defining a template for the source image, the template representing a rotation of the source image about an axis of the source image by second angle, where the second angle is the negative of the first non-zero angle; determining overlap between the template and the source image; separating the template into a plurality of strips covering at least the area of overlap; and for each strip: indentifying an initial pixel in the source image within the strip and storing the image data of the initial pixel; storing the image data of all remaining pixels within both the strip and the overlap in a database format in which the all remaining pixels is defined by a Y and X offset from the initial pixel.