Abstract:
A fitting (1) for a blood circulating circuit (4) of a dialysis machine has a first ans a second mouth (8, 9) for connecting the fitting (1) to a first ans a second portion (2, 3) of the blood circulating circuit (4) respectively; the fitting (1) defining a third portion (10) of the blood circulating circuit (4) by means of a tuby (6) by which to determine the absorption of electromagnetic waves by the blood, and by means of a chamber (7) having a wall (15) movable as a function of the pressure of the blood.
Abstract:
A method and apparatus for identifying a central blood volume and monitoring changes in the central blood volume during hemodialysis to assist in predicting an onset of intradialytic morbid events. A method of determining a central blood volume mean transit time in a patient system having the central volume and a tubing portion includes measuring a system mean transit time through the tubing portion and the central volume; calculating a tubing portion mean transit time corresponding to passage of an indicator through the tubing portion; adjusting the measured system mean transit time in response to the calculated tubing portion mean transit time to produce the central volume mean transit time and calculating a central volume by multiplying the central volume mean transit time by the cardiac output. This technology can be used not only in hemodialysis, but in intensive care units or during the surgery with extracorporeal circulation systems.
Abstract:
An implantable ultrafiltration device for removing low to medium molecular weight solutes and fluids from the blood of a patient experiencing renal failure, the device including: a pump having an inlet and an outlet; a first component for forming a first fluid flow path between the patient's vascular system and the pump inlet; a filter interposed in the first fluid flow path, the filter being permeable to water and substantially impermeable to blood cells and proteins; and a second component for forming a second fluid flow path between the pump outlet and the patient's bladder, wherein the pump, the first and second components, and the filter are all constructed to be surgically implanted in the patient's body. For removing unwanted fluids from the blood of a patient experiencing renal failure the first component is connected in the vascular system of the patient and the second component is implanted in the patient's bladder or ureter; and the pump is then operated to cause fluid to flow through the filter at a controlled rate in order to maintain the volume of the blood in the vascular system and total body volume at a selected value. The infusion of peritoneal solution free of osmotic agents can also be carried out in conjunction with conventional hemodialysis or with operation of the implanted device.
Abstract:
A differential conductivity recirculation monitor quantitatively determines the degree of recirculation in a fistula by comparing the conductivity of blood entering the fistula to the conductivity of blood being withdrawn from the fistula. A discrete quantity of a high conductivity marker fluid is injected into the blood entering the fistula, altering the conductivity of the blood entering the fistula. The altered conductivity blood enters the fistula and, if recirculation is present, co-mingles with blood in the fistula, altering the conductivity of the blood ion the fistula in proportion to the degree of recirculation. Blood withdrawn from the fistula has an altered conductivity related to the degree of recirculation. Quantitative values of the conductivity of the altered conductivity blood entering the fistula and the conductivity of the blood being withdrawn from the fistula are measured and a difference determined. The determined difference between the conductivities is used to determine a quantitative measurement of the degree of recirculation in the fistula.
Abstract:
A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.
Abstract:
A medical device system including a physiological sensor and ultrafiltration unit senses a physiological signal in a patient and computes a fluid status measurement of the patient using the physiological signal. Ultrafiltration therapy is delivered to the patient according to a therapy delivery control parameter established in response to the fluid status measurement.
Abstract:
A medical device system including a physiological sensor and ultrafiltration unit senses a physiological signal in a patient and computes a fluid status measurement of the patient using the physiological signal. Ultrafiltration therapy is delivered to the patient according to a therapy delivery control parameter established in response to the fluid status measurement.
Abstract:
The present invention relates to a device for creating a vascular access for extracorporeal blood treatment including an electrically conductive puncture needle with a proximal endpiece, a distal endpiece, and a base body made of electrically non-conductive material into which the distal endpiece is inserted. In a properly arranged vascular access, the base body, including an electrically conductive contact element, lies on the skin of the patient, when the puncture needle is located within the vessel of the patient. A disconnection or dislocation is detected by the impedance between the electrically conductive puncture needle and the electrically conductive contact element being measured and compared to a limit value. If the impedance measured is within predetermined limits, this indicates a properly arranged vascular access. A disconnection or dislocation of the puncture needle leads to a strong variation in the impedance.
Abstract:
The present invention relates to a device for creating a vascular access for extracorporeal blood treatment using an extracorporeal blood treatment device, wherein the device for creating the vascular access has an electrically conductive puncture needle with a proximal endpiece and distal endpiece, and a base body that is made of electrically non-conductive material and into which the distal endpiece of the puncture needle is inserted. In the case of a properly arranged vascular access, the base body, which includes an electrically conductive contact element, lies on the skin of the patient, when the puncture needle is located within the vessel of the patient. A disconnection or dislocation is detected by the impedance between the electrically conductive puncture needle and the electrically conductive contact element being measured and compared to a limit value. If the impedance measured is within predetermined limits, this indicates a properly arranged vascular access. A disconnection or dislocation of the puncture needle leads to a strong variation in the impedance, which indicates that the vascular access is not properly arranged.
Abstract:
A hemodialysis device includes a hemodialysis device main body including an arterial blood circuit, venous blood circuit, blood pump, dialyzer, dialysate inlet and outlet lines, voltage adding device, electric potential measuring device, and monitoring device monitoring the needle when it is detached from the patient based on an electric potential measured by the electric potential measuring device. One electrode of the voltage adding device is attached between an arterial blood needle in the arterial blood circuit and the pump, and another electrode is attached to the dialysate outlet line. The hemodialysis device allows the precise detection of a needle that is detached from a patient taking a blood hemodialysis treatment by monitoring a voltage difference at a predetermined position while providing voltage to the blood flowing in the blood circuit. The device also allows the suppression of an increase in production cost for a disposable blood circuit.