Abstract:
A sorption agent comprising activated carbon and an impregnation of the activated carbon for the sorption of air pollutants, wherein the impregnation contains a zinc compound and a molybdenum compound, as well as a gas-filtering element, such as a respirator canister, containing said sorption agent.
Abstract:
Rare earth metal compounds, particularly lanthanum, cerium, and yttrium, are formed as porous particles and are effective in binding metals, metal ions, and phosphate. A method of making the particles and a method of using the particles is disclosed. The particles may be used in the gastrointestinal tract or the bloodstream to remove phosphate or to treat hyperphosphatemia in mammals. The particles may also be used to remove metals from fluids such as water.
Abstract:
A novel technique that is able to efficiently remove, in addition to pentavalent arsenic, trivalent arsenic that has been considered to be difficult to remove. By using a manganese oxygen compound which is characterized by being a product of burning or heating which comprises an oxygen compound of bismuth and an oxygen compound of manganese and by containing manganese as a major component, an aqueous arsenic solution is treated to adsorptively remove the arsenic.
Abstract:
Various formulations of chemical compounds are disclosed to help improve the removal of fine particulates and hazardous substances present in combustion gases of fossil and derived fuels. Specifically, the formulation consists of bicarbonate and carbonate of ammonia with or without borates, formates and acetates of sodium and lithium, poly-hydroxy compounds, iodides and sulfides of ammonia and sodium, elemental iodine, elemental sulfur and mixture thereof The formula when injected into a combustion gas stream of a system fitted with an electrostatic precipitator and/or bag house helps remove the fine particulates and hazardous materials present in it.
Abstract:
The invention is a process for removing mercury compounds from a glycol- or alcohol-containing liquid absorbent stream which contains mercury compounds, especially a glycol stream which has been used in a glycol drying plant for removing water from natural gas streams. The process comprises contacting the mercury-laden liquid absorbent stream with a bed of solid absorbent particles, comprising a sulphided metal, optionally supported on support material, or sulphur supported on carbon.
Abstract:
Methods of making zirconium basic carbonate are further described which involve titrating an aqueous slurry of sodium zirconium carbonate to a pH of from about 3.5 to about 4.0 with an acidic agent wherein the sodium zirconium carbonate has a moisture content of from about 15% to about 25% LOD in solid form. The process further involves washing the aqueous slurry containing the formed zirconium basic carbonate with water. A novel zirconium basic carbonate is further disclosed which has a minimum adsorption capacity of from about 30 to about 35 mg/PO4-P/gm SCZ; a minimum HCO3- content of from about 2 to about 4 mEq HCO3-gm/SCZ; a leachable Na+ content of from about 1.5 to about 2.0 mEq Na+/gm SCZ; and/or a pH range of titrated sodium zirconium carbonate of from about 6 to about 7.
Abstract:
The invention provides compositions to remove mercury and other pollutants from a fluid stream,, particularly flue gases containing them. The composition is a mixture consisting of (a) polyhydroxy compound selected essentially from the group consisting of mono, di, poly saccharides and mixture thereof; (b) a catalyst selected essentially from the group of ammonium compounds, sulfuric acid, phosphoric acid and salts, zinc chloride, and mixture thereof; and (c) specificity producing compound selected from the group of elemental sulfur, sullides and polysulfides of ammonia and alkalies, compounds and metals of copper, silver, tin, gold, and mixture thereof. The polyhydroxy compound in (a) above, either alone or in conjunction with the third group (c), above is also shown effective to remove mercury and other pollutants from fluid streams. The composition can be liquid or dry powder. Methods are provided for applying the formulation.
Abstract:
The invention relates to a composite material, a method for controlling the thermal effects generated in a physicochemical process using said material, and applications of the material and the method. The composite material comprises an active solid and a phase change material. The phase change material takes the form of micronodules having an average size of between 1 micron and 5 millimeters and it is selected from materials with a liquid/solid phase change temperature of between −150° C. and 900° C. The active solid is selected from solids that can be used in a method involving reversible physicochemical processes that are exothermic in one direction and endothermic in the opposite direction.
Abstract:
A method of making sodium zirconium carbonate is described which involves forming a mixture of zirconium oxychloride with soda ash and then heating at a sufficient temperature and for a sufficient time to form the sodium zirconium carbonate. Subsequent washing and filtration steps can further form parts of this process. A novel sodium zirconium carbonate is further described which contains from about 2 wt % to about 5 wt % Na+; from about 44 wt % to about 50 wt % ZrO2; from about 12 wt % to about 18 wt % CO32−; and from about 32 wt % to about 35 wt % H2O. Methods of making zirconium basic carbonate are further described which involve titrating an aqueous slurry of sodium zirconium carbonate to a pH of from about 3.5 to about 4.0 with an acidic agent wherein the sodium zirconium carbonate has a moisture content of from about 15% to about 25% LOD in solid form. The process further involves washing the aqueous slurry containing the formed zirconium basic carbonate with water. A novel zirconium basic carbonate is further disclosed which has a minimum adsorption capacity of from about 30 to about 35 mg/PO4- P/gm SCZ; a minimum HCO3- content of from about 2 to about 4 mEq HCO3-gm/SCZ; a leachable Na+ content of from about 1.5 to about 2.0 in Eq Na+/gm SCZ; and/or a pH range of titrated sodium zirconium carbonate of from about 6 to about 7. A method of making zirconium phosphate is also disclosed which involves treating sodium zirconium carbonate with caustic soda to from an alkaline hydrous zirconium oxide which is subsequently heated and mixed with phosphoric acid to obtain an acid zirconium phosphate which can be titrated with caustic soda to achieve the desired zirconium phosphate. Novel zirconium phosphates are also disclosed as well as uses for the above zirconium containing materials.
Abstract:
Copper/alumina compositions for uses as e.g. catalysts are made by impregnating a porous transition alumina support with an aqueous solution of a copper ammine carbonate complex, draining off any excess of the impregnating solution, and then heating the impregnated support to a temperature above 80° C. to decompose the complex thereby depositing a basic copper carbonate compound on the surfaces of the pores of transition alumina support. After reduction, the composition has a high copper surface area, expressed per unit weight of copper in the composition.