Abstract:
The instant invention relates to producing perhalofluorobutanes and perhalofluorohexanes, more particularly it relates to their production by utilizing tetrafluoroethylene (hereinafter referred to as “TFE”) and chlorotrifluoro-ethylene (hereinafter referred to as “CTFE”) with selected perhalofluoroethanes containing 2 to 4 nonfluorine halogen and 2 to 4 fluorine substituents in the presence of a polyvalent metal halide such as an aluminum chloride or chlorofluoride as catalyst.
Abstract:
Process for preparing aluminum fluoride having an high surface area and high pore volume comprising the fluorination with HF of alumina having surface area of at least 150 m2/g and pore volume not lower than 0.3 cc/g, said alumina comprising from about 0.5 up to about 15% by weight of silicon oxide.
Abstract:
Mixed fluorination catalyst comprising one or more nickel and chromium oxides, halides and/or oxyhalides deposited on a support composed of aluminium fluoride or of a mixture of aluminium fluoride and alumina, characterized in that the weight of nickel/weight of chromium ratio is between 0.08 and 0.25, preferably between 0.1 and 0.2.
Abstract:
The instant invention relates to producing perhalofluorobutanes and perhalofluorohexanes, more particularly it relates to their production by utilizing tetrafluoroethylene (hereinafter referred to as "TFE") and chlorotrifluoro-ethylene (hereinafter referred to as "CTFE") with selected perhalofluoroethanes containing 2 to 4 nonfluorine halogen and 2 to 4 fluorine substituents in the presence of a polyvalent metal halide such as an aluminum chloride or chlorofluoride as catalyst.
Abstract:
1,1,1,2-tetrafluoroethane (134a) is prepared by reacting, in the gas phase, trichloroethylene with 1,1,1-trifluorochloroethane (133a) and hydrofluoric acid with trichloroethylene/133a molar ratios ranging from 5/95 to 50/50, in the presence of a catalyst consisting of Cr.sub.2 O.sub.3 carried on AlF.sub.3.The process provides 134a yields higher than 90% and permits an exceptionally long life of the catalyst. In this way it is possible to realize a continuous process by recycling the unreacted trichloroethylene and 133a, thereby making up for the relatively low global conversion of the reagents.
Abstract:
A catalyst composition for use in oligomerization of olefins contained in refinery distillate streams including paraffins, naphthenes, and aromatics therein, the catalyst consisting of a first constituent which is at least one aluminum halide; and a second constituent which is at least one alkoxide of a transition metal of Group IVB of the Periodic Table and which has a general formula:M(OR).sub.4,where M is selected from the group consisting of metals of Group IVB of the Periodic Table and R is one of (a) an alkyl group having from 1-12 carbon atoms or (b) an alkylaryl group having an alkyl chain having from 1-12 carbon atoms.
Abstract:
The invention relates to a method for producing 3,3-dichloro-1,1,1-trifluoroacetone. This method includes a step of fluorinating pentachloroacetone by hydrogen fluoride in the presence of a fluorination catalyst. This fluorination may be conducted in a liquid phase in the presence of an antimony compound as the fluorination catalyst. Alternatively, the fluorination may be conducted in a gas phase in the presence of a fluorination catalyst which may be a fluorinated alumina or at least one compound of at least one metal selected from Al, Cr, Mn, Ni, and Co. The method is suited to an industrial scale production of 3,3-dichloro-1,1,1-trifluoroacetone. The invention further relates to another method for producing 3,3-dichloro-1,1,1-trifluoroacetone. This method includes a step of purifying a crude 3,3-dichloro-1,1,1-trifluoroacetone by a distillation in the presence of water, thereby to produce 3,3-dichloro-1,1,1-trifluoroacetone which is substantially free of organic matters other than 3,3-dichloro-1,1,1-trifluoroacetone. This crude 3,3-dichloro-1,1,1-trifluoroacetone may be the reaction products of the fluorination of pentachloroacetone in a gas phase. Due to the provision of the another method, 3,3-dichloro-1,1,1-trifluoroacetone can be produced with high yield.
Abstract:
A composition of matter, which is an effective alkylation catalyst composition, is prepared by a method comprising heating, at a temperature of about 40.degree.-90.degree. C., (a) aluminum chloride, (b) boron phosphate, (c) alumina and/or silica, and (d) at least one chlorinated hydrocarbon (preferably CCl.sub.4), and subsequently separating the formed solid from the chlorinated hydrocarbon. The thus-prepared catalyst composition is employed in the alkylation of C.sub.2 -C.sub.7 alkane(s) with C.sub.2 -C.sub.7 alkene(s).
Abstract:
A hydrotreating catalyst is described which comprises at least one Group VI metal, metal oxide, or metal sulfide, at least one Group VIII metal, metal oxide, or metal sulfide, and a halogen supported on a carrier wherein(A) the catalyst comprises from about 10% to about 35% by weight of combined metal and the atomic ratio of the Group VIII metal to Group VI metal is in the range of from about 0.5:1 to about 2:1;(B) the catalyst contains from about 0.5 to about 10% by weight of halogen;(C) the carrier comprises from about 10 to about 50% by weight of silica and from about 40 to about 90% of alumina; and(D) the catalyst is characterized as having a median pore radius of from about 20 to about 90 Angstroms, and a surface area of from about 90 to about 230 m.sup.2 /g.The catalyst is useful in the production of lubricating oils from crude lubricating oil stocks. Hydrotreating processes using the catalysts of the invention result in the production of oils having increased viscosity indexes, reduced aromatic content and improved stability. The nitrogen and sulfur content of the oils also are reduced through the use of the catalyst in the hydrogenation process.