Abstract:
A method of fabricating a component and a fabricated component are disclosed. The method includes depositing a material to a component and manipulating the material to form a boundary region and a filler region for desired properties. The component includes the boundary region and the filler region, thereby having the desired properties.
Abstract:
A method for applying a protective layer to protect against an impact stress includes mixing a sealing alloy in a powder form with a binder and water to form a pasty compound, applying the pasty compound on a surface to be protected, drying the applied pasty compound, and heating the dried applied pasty compound to a temperature of at least 800° C.
Abstract:
In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.
Abstract:
A joining process and a joined article are disclosed. The joining process includes positioning an article having a base material, and friction welding a pre-sintered preform to the base material. The pre-sintered preform forms a feature on the article. The joined article includes a feature joined to a base material by friction welding of a pre-sintered preform.
Abstract:
A method of repairing a superalloy component (22) wherein a section (24) of the component containing a plurality of service-induced cracks (18, 20) is removed, then a replacement section (26) of superalloy material is installed with a structural braze joint (28) containing no boron or silicon. The replacement section may have a textured surface ((38) to enhance bonding with an overlying thermal barrier coating (42). The replacement section may be pre-formed to standardized dimensions in expectation of a typical service-induced crack pattern, and the removed section excavated accordingly. The interface between the replacement section and the component may be shaped to provide a mechanical interlock there between.
Abstract:
Solder alloy based on nickel is composed of a mixture with a first soldering material, a second soldering material, and a base material, wherein the base material is a nickel-based material which corresponds to the material to be soldered and is present in a proportion of 45-70% by weight in the mixture, the first soldering material is a nickel-based material including chromium, cobalt, tantalum, aluminum and boron, and is present in a proportion of 15-30% by weight in the mixture, and the second soldering material is a nickel-based material including chromium, cobalt, molybdenum, tungsten, boron and hafnium, and is present in a proportion of 15-25% by weight in the mixture.
Abstract:
A filler metal chemistry includes an amount of chromium weight of between about 9.0% and about 16% by weight, an amount of cobalt of between about 7.0% and about 14% by weight, an amount of molybdenum of between about 10% and about 20% by weight, an amount of iron of between about 1.0% and about 5.0% by weight, an amount of aluminum of between about 0.05% and about 0.75% by weight, an amount of titanium of between about 0.5% and about 2.0% by weight, an amount of manganese not to exceed 0.8% by weight, an amount of carbon of between 0.02% and about 0.10% by weight, an amount of titanium+aluminum of between about 0.55% and 2.75% by weight, and an amount of nickel.
Abstract:
A method of fabricating a component and a fabricated component are disclosed. The method includes depositing a material to a component and manipulating the material to form a boundary region and a filler region for desired properties. The component includes the boundary region and the filler region, thereby having the desired properties.
Abstract:
A class of nickel based alloys having a fine grain structure resistant to stress corrosion cracking, and methods of alloy design to produce further alloys within the class are presented. The alloys act as suitable welding materials in similar applications to that of Alloy 622. The fine-grained structure of these novel alloys may also be advantageous for other reasons as well such as wear, impact, abrasion, corrosion, etc. These alloys have similar phases to Alloy 622 in that they are composed primarily of austenitic nickel, however the phase morphology is a much finer grained structure opposed to the long dendritic grains common to Alloy 622 when it is subject to cooling rates from a liquid state inherent to the welding process.
Abstract:
A nickel, chromium, iron alloy and method for use in producing weld deposits and weldments formed therefrom. The alloy comprises, in weight percent, about 28.5 to 31.0% chromium; about 0 to 16% iron; less than about 1.0% manganese; about 2.1 to 4.0% niobium plus tantalum; 1.0 to 6.5% molybdenum; less than 0.50% silicon; 0.01 to 0.35% titanium; 0 to 0.25% aluminum; less than 1.0% copper; less than 1.0% tungsten; less than 0.5% cobalt; less than about 0.10% zirconium; less than about 0.01% sulfur; less than 0.01% boron; less than 0.03% carbon; less than about 0.02% phosphorous; 0.002 to 0.015% magnesium plus calcium; and balance nickel and incidental impurities. The method includes the steps of forming a welding electrode from the above alloy composition and melting the electrode to form a weld deposit. A preferred weldment may be in the form of a tubesheet of a nuclear reactor.