Abstract:
An implantable biocompatible component (10) integrating an active element of the type of a sensor for the measurement of a physiologic parameter, a micro-electromechanical system and an integrated electronic circuit. This component (10) has a substrate (12) and a lid (22) in silicon or quartz. The substrate (12) integrates the active element (14) and biocompatible metallic pads (16), electrically connected to the active element. The lid (22) encompasses and peripherally closes the substrate in a hermetic manner, level with the face integrating the active element. This component is void of metallic case for insulation between the active element and outside environment, and of insulative feedthrough for electrical connection to the active element. The substrate and lid can be directly welded to each other through their faces in vis-à-vis, or by interpositioning a sealing ring made of a biocompatible material.
Abstract:
According to one embodiment, a strain sensing element provided on a deformable substrate includes: a first magnetic layer; a second magnetic layer; a spacer layer; and a bias layer. Magnetization of the second magnetic layer changes according to deformation of the substrate. The spacer layer is provided between the first magnetic layer and the second magnetic layer. The second magnetic layer is provided between the spacer layer and the bias layer. The bias layer is configured to apply a bias to the second magnetic layer.
Abstract:
A new and novel method utilizing current nano-technological processes for fabricating a range of micro-devices with significantly expanded capabilities, unique functionalities at microscopic levels, enhanced degree of flexibilities, reduced costs and improved performance in the fields of bioscience and medicine is disclosed in the within patent application. Micro-devices fabricated using the disclosed nano-technological techniques have significant improvements in many areas over the existing, conventional methods. Such improvements include, but are not limited to reduced overall costs, early disease detection, targeted drug delivery, targeted disease treatment and reduced degree of invasiveness in treatment. Compared with existing, conventional approaches, the said inventive approach disclosed in this patent application is much more microscopic, sensitive, accurate, precise, flexible and effective. This novel approach is able to deliver a superior level of performance in medical treatments over the existing modalities.While microelectronic processes have been used for fabricating integrated circuit (“IC”) devices such as microprocessors, digital signal processors (“DSP”) and memory chips for the past two to three decades, their use has not been extended to most areas of bioscience and medicine. While there have been some application of micro-chips used in the area of laboratory diagnostic tests such as gene/DNA mapping and potential tests for diseases, their meaningful application in the areas of in-vivo diagnosis, drug delivery and disease treatments have not been utilized and are basically non-existent in the current state of the art. The disclosure herein utilizes these techniques to manufacture micro-devices for use in biological and medical applications as a microscopic way of treating disease.
Abstract:
The invention relates to an semi-conductor device comprising a first surface and neighboring first and second electric elements arranged on the first surface, in which each of the first and second elements extends from the first surface in a first direction, the first element having a cross section substantially perpendicular to the first direction and a sidewall surface extending at least partially in the first direction, wherein the sidewall surface comprises a first section and a second section adjoining the first section along a line extending substantially parallel to the first direction, wherein the first and second sections are placed at an angle with respect to each other for providing an inner corner wherein the sidewall surface at the inner corner is, at least partially, arranged at a constant distance R from a facing part of the second element for providing a mechanical reinforcement structure at the inner corner.
Abstract:
The invention relates to a device comprising a wafer comprising a silicon area and a wafer comprising a glass area fastened to each other, the fastening zone thus formed between the wafers defining a multilayer structure comprising a first layer protecting the silicon from physical changes caused by attack of the surface, which layer covers the silicon area, and a second layer protecting the glass from physical changes caused by attack of the surface, which layer covers the glass area; said multilayer structure furthermore comprising at least one additional layer enabling anodic bonding between the two protective layers; said device containing at least one fluid channel protected by said protective layers and able to contain a solution temporarily.
Abstract:
Compression cold welding methods, joint structures, and hermetically sealed containment devices are provided. The method includes providing a first substrate having at least one first joint structure which comprises a first joining surface, which surface comprises a first metal; providing a second substrate having at least one second joint structure which comprises a second joining surface, which surface comprises a second metal; and compressing together the at least one first joint structure and the at least one second joint structure to locally deform and shear the joining surfaces at one or more interfaces in an amount effective to form a metal-to-metal bond between the first metal and second metal of the joining surfaces. Overlaps at the joining surfaces are effective to displace surface contaminants and facilitate intimate contact between the joining surfaces without heat input. Hermetically sealed devices can contain drug formulations, biosensors, or MEMS devices.
Abstract:
A new and novel method utilizing current nano-technological processes for fabricating a range of micro-devices with significantly expanded capabilities, unique functionalities at microscopic levels, enhanced degree of flexibilities, reduced costs and improved performance in the fields of bioscience and medicine is disclosed in the within patent application. Micro-devices fabricated using the disclosed nano-technological techniques have significant improvements in many areas over the existing, conventional methods. Such improvements include, but are not limited to reduced overall costs, early disease detection, targeted drug delivery, targeted disease treatment and reduced degree of invasiveness in treatment. Compared with existing, conventional approaches, the said inventive approach disclosed in this patent application is much more microscopic, sensitive, accurate, precise, flexible and effective. This novel approach is able to deliver a superior level of performance in medical treatments over the existing modalities.While microelectronic processes have been used for fabricating integrated circuit (“IC”) devices such as microprocessors, digital signal processors (“DSP”) and memory chips for the past two to three decades, their use has not been extended to most areas of bioscience and medicine. While there have been some application of micro-chips used in the area of laboratory diagnostic tests such as gene/DNA mapping and potential tests for diseases, their meaningful application in the areas of in-vivo diagnosis, drug delivery and disease treatments have not been utilized and are basically non-existent in the current state of the art. The disclosure herein utilizes these techniques to manufacture micro-devices for use in biological and medical applications as a microscopic way of treating disease.
Abstract:
Provided is a method for controllably activating a surface for stable amine-reactive chemistries. A surface containing nitride is exposed to a plasma having a reactive species containing hydrogen for a period of time sufficient to activate the substrate for amine-reactive chemistries. Amine-reactive chemical processes can then be applied to the activated surface to reliably and controllably bond molecules directly to said surface. The method is designed to create stable primary amines on the nitride substrate, so that any subsequent amine-reactive chemistry may proceed in a controlled manner that is directly proportional to the density of surface amines so created.
Abstract:
A method is disclosed for making a MEMS device wherein anhydrous HF exposed silicon nitride is used as a temporary adhesion layer allowing the transfer of a layer from a Carrier Wafer to a Device Wafer.
Abstract:
Provided is an apparatus. In one embodiment, this apparatus includes a substrate having a surface, and a plurality of nanostructures each having a first end and a second end, wherein the first end of each of the plurality of nanostructures is attached to the surface. At least a portion of the second ends of the plurality of nanostructures, in this embodiment, are bent toward one another to form two or more similarly configured clumps each including two or more nanostructures.