Abstract:
A pneumatically actuated vacuum pump is disclosed, and includes a body defining a converging motive section, a diverging discharge section, at least one suction port, and a Venturi gap. The Venturi gap is located between an outlet end of the converging motive section and an inlet end of the diverging discharge section. The pneumatically actuated vacuum pump also includes a first check valve fluidly connected to the Venturi gap and the suction port. The pneumatically actuated vacuum pump further includes at least one second gap located in the diverging discharge section of the body downstream of the Venturi gap. A second check valve is fluidly connected to the second gap.
Abstract:
An intake manifold having variable diameters is provided. The intake manifold includes a tube body and a valve. The valve is rotatably disposed in the tube body, wherein the valve is a hollow-ring and includes an outer circumference and an inner circumference, and a gradient curve surface is formed from the outer circumference to the inner circumference; wherein the inner circumference defines a inlet face, and a gradually varied angle is formed between a normal vector of the inlet face and a cross section at an end of the tube body while the valve rotates.
Abstract:
The present invention is to prevent mixing of fresh air and an air-fuel mixture when a throttle valve is fully opened and increase a delivery ratio. A main nozzle (30) is surrounded by a tunnel-like air flow guiding member (52). The air flow guiding member (52) is opened at its front and back sides. A whole amount of fuel discharged via a main nozzle (30) is sent to a downstream side by an air flow created by the air flow guiding member (52). When a throttle valve (22) and a choke valve (24) are both in a fully-opened state, fresh air flows into an air-fuel mixture passage (12) through a gap between these valves (22, 24).
Abstract:
An intake control system for a multi-cylinder combustion engine with control valves positioned within intake passageways that can vary the cross-sectional area of the intake runners to increase air intake velocity at low engine speeds. The control system includes an inner frame that can be inserted into a lower manifold after manufacture. The inner frame includes a plurality of flapper valves that are actuated by a four-bar link design, which is driven by a hypoid gear-set. The control system controls an internal DC electric motor that actuates a worm-drive gear-set, which in turn drives the hypoid gear-set to either engage or retract the flapper valves within the intake passageways.
Abstract:
The present invention provides an intake control device that appropriately restricts the flow of intake air when a valve body is set to a restriction position while the valve body is smoothly operated. The valve body is configured such that it is supported so as to be capable of swinging with respect to a sleeve, and when the valve body is set to the restriction position, a main valve portion of the valve body is lifted upward from a bottom plate, and a secondary valve portion of the valve body is sunk into an accommodating space of the bottom plate. In the accommodating space, a stepped portion that allows outward displacement from an inner surface of the sleeve is formed, and a seal portion that is brought closer to the stepped portion when the valve body is set to the restriction position is formed in the secondary valve portion.
Abstract:
A dual path fresh air system, having a first air supply path, the first path supplies air to at least one first cylinder set; a second air supply path, the second path supplies air to at least on second cylinder set; a first exhaust gas recirculation inlet fluidly connected to the first path to introduce recirculated exhaust gas into the first path; a second exhaust gas recirculation inlet fluidly connected to the second path to introduce recirculated exhaust gas into the second path; a first valve member, which is arranged upstream of the first exhaust gas recirculation inlet in the first path, wherein the first valve member controls fluid flowing through a cross section of the first path; and a second valve member which is arranged upstream of the second exhaust gas recirculation inlet in the second path, for controlling fluid flowing through a cross section of the second path.
Abstract:
The intake system has a valve seat, a plate valve, and an elastic sealing member. A path is provided to pass through the valve seat and to communicate with an intake passage of an internal combustion engine. The plate valve fits to or separates from the valve seat to close or open the path. The plate valve is provided with through holes passing through the plate valve in the thickness direction at a valve periphery part. The through holes are arranged linearly one after another in a peripheral direction of the plate valve to be offset to each other in the direction perpendicular to the peripheral direction. The elastic sealing member includes an elastic covering part that covers a first surface and a second surface of the plate valve and elastic coupling parts that are disposed in the through holes and are coupled with the elastic covering part at the first surface and the second surface.
Abstract:
Methods and systems are provided for a parallel arrangement of at least two valved aspirators, with a high pressure source such as an intake throttle inlet coupled to a motive inlet of the arrangement and a low pressure sink such as an intake throttle outlet coupled to a mixed flow outlet of the arrangement. Intake throttle position and respective valves arranged in series with each aspirator of the arrangement are controlled based on intake manifold pressure and/or a desired engine air flow rate, for example such that a combined motive flow rate through the arrangement increases as intake manifold pressure increases. An intake throttle with a fully closed default position may be used in conjunction with the arrangement; during a fault condition where the intake throttle is fully closed, the valves of the arrangement may be controlled to achieve a controllable engine air flow rate during the fault condition.
Abstract:
An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.
Abstract:
The invention relates to a gas supply module (20) for an engine, comprising a heat exchanger (22) capable of cooling gases for the intake thereof in an intake space of a cylinder head of the engine, and a gas supply valve (24) capable of directing said gases toward the intake space of said cylinder head and/or through said heat exchanger (22), said module (20) further comprising an interface element (26) closing said intake space of said cylinder head. According to the invention, said interface element (26) and said valve (24) are shaped such that said valve (24) can be attached to said cylinder head via at least a first attachment means extending through at least the interface element (26). The invention also relates to an assembly of an engine cylinder head and such a module, and to a motor vehicle engine comprising such an assembly. The invention can particularly be used in the field of motor vehicles.