Abstract:
A coated article, a coating for protecting an article, and a method for protecting an article are provided. The article comprises a metallic substrate and a substantially single-phase coating disposed on the substrate, wherein the coating comprises nickel (Ni) and at least about 30 atomic percent aluminum (Al); the coating further comprises a gradient in Al composition, the gradient extending from a first Al concentration level at an outer surface of the coating to a second Al concentration level at an interface between the substantially single-phase coating and the substrate, wherein the first Al concentration level is greater than the second Al concentration level and the second concentration level is at least about 30 atomic percent Al.
Abstract:
An erosion resistant protective structure for a turbine engine component comprises a shape memory alloy. The shape memory alloy includes nickel-titanium based alloys, indium-titanium based alloys, nickel-aluminum based alloys, nickel-gallium based alloys, copper based alloys, gold-cadmium based alloys, iron-platinum based alloys, iron-palladium based alloys, silver-cadmium based alloys, indium-cadmium based alloys, manganese-copper based alloys, ruthenium-niobium based alloys, ruthenium-tantalum based alloys, titanium based alloys, iron-based alloys, or combinations comprising at least one of the foregoing alloys. Also, disclosed herein are methods for forming the shape memory alloy onto turbine component.
Abstract:
A surface of aluminum alloy or iron alloy coated, on at least a part, with a lead-free copper-based coating layer comprising, by weight, 0.2–15% bismuth, and at least one metal selected from the group consisting of 5–40% nickel, 1–20% chromium, 1–20% iron, and 1–10% cobalt, the balance being copper which is more than 55%. The surface may be of a swashplate used in swashplate type compressors.
Abstract:
The compressor has two rotors (14, 16), which are rotatably mounted in a housing (10) by means of a shaft each, the rotors (14, 16) rotating without contact with the housing. The rotors (14, 16) consist of a powder-metallurgical Al—Si alloy, and the housing (10) consists essentially of aluminum.
Abstract:
A multi-layered component, such as a rocket engine combustion chamber, includes NiAl or NiAl-based alloy as a structural layer on the “hot” side of the component. A second structural layer is formed of material selected from Ni-based superalloys, Co-based alloys, Fe-based alloys, Cu, and Cu-based alloys. The second material is more ductile than the NiAl and imparts increased toughness to the component. The second material is selected to enhance one or more predetermined physical properties of the component. Additional structural layers may be included with the additional material(s) being selected for their impact on physical properties of the component.
Abstract:
A multistage dry pump includes a pump housing having plural pump chambers aligned in parallel, a rotational shaft extending along a parallel alignment direction of the plural pump chambers and rotatably supported by the pump housing, and plural rotors parallelly aligned in an axial direction of the rotational shaft and furnished in the respective plural pump chambers. The rotational shaft is formed with a base material of which linear expansion coefficient is less than 6×10−6 m/m·K inclusive, and the respective plural rotors is made of a material which is more easily machined than the material of the rotational shaft.
Abstract translation:多级干式泵包括:泵壳体,其具有平行排列的多个泵室,沿着多个泵室的平行排列方向延伸并由泵壳体可旋转地支撑的旋转轴,以及沿旋转轴线方向平行排列的多个转子 并设置在相应的多个泵室中。 旋转轴形成有线膨胀系数小于6×10 -6 m / m·K的基材,并且各个转子由比旋转轴的材料更容易加工的材料制成。
Abstract:
A circular disc shape case 11 includes a motor rotor chamber 12, a bearing chamber 13 and a gear chamber 14 piled sequentially and being communicated with each other. A suction port 15 is connected to the motor rotor chamber 12, and a discharge port 16 is connected to the gear chamber 14, which communicate with outside respectively. A rotating shaft 18 having an end positioned in the motor rotor chamber 13 and the other end extending to the gear chamber 14. A rotor 22 is fixed around the rotation shaft 18 in the motor rotor chamber 13. A first bearing 19 is provided for supporting the end of the rotating shaft 18 in radial and thrust directions. A second bearing 20 is provided in the bearing chamber 13 for supporting an intermediate portion of the rotating shaft 18 in radial direction. A trochoid gear 25 is provided in the gear chamber 14, having an outer rotor 26 and an inner rotor 27, which functions as a pump, taking in a fluid through the suction port pipe 15, and discharging the fluid from the discharge port 16.
Abstract:
The invention relates to a hybrid blade (1) for thermal turbomachines, having an airfoil (2) made of a metallic material of a certain density, and having a blade root (3). It is characterized in that the blade root (3), compared with the airfoil (2), is made of a different metallic material having a lower density, and in that the airfoil (20) is connected to the blade root (3) in a positive-locking manner. The blade in this case is advantageously a compressor blade, in particular a high-pressure compressor blade, in which the airfoil (2) is made of a stainless CrNi steel and the blade root (3) is made of a high-temperature titanium alloy or an intermetallic gamma titanium aluminide alloy or an intermetallic orthorhombic titanium aluminide alloy.
Abstract:
In order to make labyrinth seal lips on the periphery of a metal moving part of a turbomachine, a thick layer of refractory material that adheres to the metal is made prior to assembling the moving part, the refractory material advantageously comprising at least one metal selected for example from Fe, Co, and Ni, together with at least one ceramic selected for example from borides, nitrides, carbides, and refractory oxides. The labyrinth seal lips that are to be made are machined to their final dimensions in the deposited thick layer.
Abstract:
A turbine blade has an airfoil section with a root end and a tip end, and an attachment at the root end of the airfoil section. A blade tip seal is joined to the tip end of the airfoil section. The blade tip seal is formed as an open-cell solid aluminum oxide foam made of aluminum oxide cell walls having intracellular volume therebetween. The blade tip seal has a blade interface region adjacent to the tip end of the airfoil section. The blade interface region is formed of the aluminum oxide foam and a nickel-base alloy within the intracellular volume. The blade tip seal also has a contact region remote from the blade interface region and comprising the aluminum foam wherein the intracellular volume is porosity.