Abstract:
The disclosure includes, in general, among other aspects, an apparatus having multiple programmable units integrated within a processor. The apparatus has circuitry to map addresses in a single address space to resources within the multiple programmable units where the single address space includes addresses for different ones of the resources in different ones of the multiple programmable units and where there is a one-to-one correspondence between respective addresses in the single address space and resources within the multiple programmable units.
Abstract:
Methods and arrangements for performing synchronized collective operations. Communication calls are accepted from at least two distinct processor groups. Edge disjoint spanning paths are created over a collective comprising the processor groups, and the spanning paths are assigned to the processor groups to facilitate communication within each processor group.
Abstract:
System and method embodiments are provided for creating data structure for parallel programming. A method for creating data structures for parallel programming includes forming, by one or more processors, one or more data structures, each data structure comprising one or more global containers and a plurality of local containers. Each of the global containers is accessible by all of a plurality of threads in a multi-thread parallel processing environment. Each of the plurality of local containers is accessible only by a corresponding one of the plurality of threads. A global container is split into a second plurality of local containers when items are going to be processed in parallel and two or more local containers are merged into a single global container when a parallel process reaches a synchronization point.
Abstract:
Methods, apparatuses, and computer program products for collective operation management in a parallel computer are provided. Embodiments include a parallel computer having a first compute node operatively coupled for data communications over a tree data communications network with a plurality of child compute nodes. Embodiments also include each child compute node performing a first collective operation. The first compute rode, for each child compute node, receives from the child compute node, a result of the first collective operation performed by the child compute node. For each result received from a child compute node, the first compute node stores a timestamp indicating a time that the child compute node completed the first collective operation. The first compute node also manages, based on the stored timestamps, execution of a second collective operation over the tree data communications network.
Abstract:
A system includes a plurality of arithmetic devices configured to execute arithmetic processes in parallel. Each of plurality of arithmetic devices is configured to: determine whether a time period from the start of collective communication to reception from another arithmetic device involved in the collective communication is equal to or shorter than a predetermined threshold, determine a target arithmetic device that is among the plurality of arithmetic devices and for which a waiting scheme involved in the collective communication is to be changed when the time period is determined to be equal to or shorter than the predetermined threshold, and transmit, to the target arithmetic device, an instruction to change the waiting scheme involved in the collective communication.
Abstract:
A collective communication apparatus and method for parallel computing systems. For example, one embodiment of an apparatus comprises a plurality of processor elements (PEs); collective interconnect logic to dynamically form a virtual collective interconnect (VCI) between the PEs at runtime without global communication among all of the PEs, the VCI defining a logical topology between the PEs in which each PE is directly communicatively coupled to a only a subset of the remaining PEs; and execution logic to execute collective operations across the PEs, wherein one or more of the PEs receive first results from a first portion of the subset of the remaining PEs, perform a portion of the collective operations, and provide second results to a second portion of the subset of the remaining PEs.
Abstract:
Algorithm selection for data communications in a parallel active messaging interface (‘PAMI’) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including specifications of a client, a context, and a task, endpoints coupled for data communications through the PAMI, including associating in the PAMI data communications algorithms and bit masks; receiving in an origin endpoint of the PAMI a collective instruction, the instruction specifying transmission of a data communications message from the origin endpoint to a target endpoint; constructing a bit mask for the received collective instruction; selecting, from among the associated algorithms and bit masks, a data communications algorithm in dependence upon the constructed bit mask; and executing the collective instruction, transmitting, according to the selected data communications algorithm from the origin endpoint to the target endpoint, the data communications message.
Abstract:
Embodiments of a data handling apparatus can include a network interface controller configured to interface a processing node to a network. The network interface controller can include a network interface, a register interface, a processing node interface, and logic. The network interface can include lines coupled to the network for communicating data on the network. The register interface can include lines coupled to multiple registers. The processing node interface can include at least one line coupled to the processing node for communicating data with a local processor local to the processing node wherein the local processor can read data to and write data from the registers. The logic can receive packets including a header and a payload from the network and can insert the packets into the registers as indicated by the header.
Abstract:
A collective communication apparatus and method for parallel computing systems. For example, one embodiment of an apparatus comprises a plurality of processor elements (PEs); collective interconnect logic to dynamically form a virtual collective interconnect (VCI) between the PEs at runtime without global communication among all of the PEs, the VCI defining a logical topology between the PEs in which each PE is directly communicatively coupled to a only a subset of the remaining PEs; and execution logic to execute collective operations across the PEs, wherein one or more of the PEs receive first results from a first portion of the subset of the remaining PEs, perform a portion of the collective operations, and provide second results to a second portion of the subset of the remaining PEs.
Abstract:
A method for generating a distributed data scalable adaptive map-reduce framework for at least one multi-core cluster. The method includes partitioning a cluster into at least one computational group, determining at least one key-group leader within each computational group, performing a local combine operation at each computational group, performing a global combine operation at each of the at least one key-group leader within each computational group based on a result from the local combine operation, and performing a global map-reduce operation across the at least one key-group leader within each computational group.