Abstract:
Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica: alumina ratio, and are prepared from microemulsions containing surfactants.
Abstract:
Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions and high catalytic cracking activity, a method for their preparation and their use as FCC catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution. The new SAPOs may have a small crystal size and may be synthesized from a single- phase synthesis solution.
Abstract:
Maghnia or Mostaganem bentonites, are activated by contacting the Maghnia or Mostaganem bentonite with an acid solution of selected concentration and then drying the Maghnia or Mostaganem bentonite to form an activated bentonite catalyst. This activated bentonite catalyst may be used to polymerize a vinyl, acrylic, cyclic ether, aldehyde, lactone or olefin monomer. In a further embodiment, a perflourinated amine or diamine is synthesized by contacting a Maghnia or Mostaganem bentonite with an acid solution of selected concentration, drying the Maghnia or Mostaganem bentonite, and absorbing a secondary amine with the Maghnia or Mostaganem bentonite to form a perflouroamide iodide salt. The perflouramide idodide salt can then be extracted with a polar solvent and neutralized by the use of a basic solution.
Abstract:
An improved catalyst and process are disclosed for the selective disproportionation of toluene. The process uses a zeolitic catalyst which is oil-dropped in an aluminum phosphate binder and has an X-ray diffraction pattern showing characteristic intensities at specified Bragg angles. Optionally, the catalyst is selectively precoked prior to toluene disproportionation. The catalyst and process provide improved selectivity for the production of paraxylene.
Abstract:
The present invention provies an adsorbent which, as compared with an adsorbent comprising a zeolite (an aluminosilicate) of at least about equal Si/(Fe+Al) molar ratio (Fe is substantially absent), has high heat resistance and high hydrothermal resistance and can maintain adsorption capability even when exposed to high temperatures. This adsorbent comprises a &bgr;-silicate molecular sieve containing at least Fe besides H, O and Si and, when Al is contained, containing Fe in a molar amount at least equal to that of Al.
Abstract:
A process and catalyst are provided for dehydrogenating a hydrocarbon feedstock and producing an olefinic product. The process comprises contacting the feedstock at dehydrogenation conditions with a dehydrogenation catalyst comprising from about 0.01 weight percent to about 5.0 weight percent of a platinum group metal, from about 0.02 weight percent to about 10.0 weight percent of zinc, and a support component comprising borosilicate and an alkali metal.
Abstract:
In an exhaust gas in an oxygen-rich atmosphere, a method of purifying an exhaust gas and a catalyst for purifying an exhaust gas, which can exhibit a high NOx conversion securely, are provided. Disclosed is a method of purifying an exhaust gas that reduces and purifies NOx in an exhaust gas in an oxygen-rich atmosphere. Here, as a catalyst for purifying an exhaust gas, a loading layer comprising zeolite is loaded with alumina sulfate and cerium sulfate-zirconium composite oxide, and Pt is loaded on these. And, in a temperature range where HC are not oxidized, the HC are adsorbed and held by the zeolite, the HC, which the zeolite releases at the temperature increment, are subjected to cracking by the zeolite, the alumina sulfate and the cerium sulfate-zirconium composite oxide, and the thus produced low-grade HC are turned into reducing agents, thereby reducing and purifying the NOx in the exhaust gas.
Abstract:
The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
Abstract:
There is provided a catalyst containing porous macrostructures comprised of: (a) a three-dimensional network of particles of porous inorganic material (e.g., zeolites); and, (b) at least one metal (e.g., a catalytically active metal). The particles of the at least one macrostructure occupy less than 75% of the total volume of the at least one macrostructure and are jointed together to form a three-dimensional interconnected network. The three-dimensional interconnected network will usually be comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger (e.g., a polymer-based ion exchange resin) and a synthesis mixture (e.g., for zeolite formation) capable of forming the porous inorganic material and the at least one metal; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material. The metal-containing macrostructures find application in hydrocarbon conversion (e.g., hydrogenation, dehydrogenation, dehydrocyclization, isomerization, hydrocracking, dewaxing, reforming, conversion of alkyl aromatics, etc.) and in the reduction of emissions of hydrocarbons, carbon monoxide, and/or oxides of nitrogen from an internal combustion engine.
Abstract:
The present invention provides a macroporous foam comprising microporous zeolite or zeotype material and preparation thereof, which comprises dipping a polymeric template capable of releasing an amine which has a sponge or macroporous structure and can be selected from a group consisting of polyurethane, polyamides, aromatic or aliphatic polyimides, polyamideimides, epoxy resins having an amine skeleton, and polymeric materials capable of releasing an organic amine by hydrolysis, in an alkaline or acidic solution, gel or sol of a precursor of said zeolite or zeotype material, and reacting the resultant at a suitable temperature for a period such that all or almost all of the polymeric template can be replaced with zeolite or zeotype material. Said foam comprising zeolite or zeotype material has the outer shape and size and the inner sponge or macroporous structure which are the same or similar to those of the polymeric template used.