Abstract:
An acidic group-containing solid polymer, having an acidic group such as a sulfonic acid group, a phosphoric acid group, and/or a phosphonic acid group, is dissolved in an organic solvent other than methanol. An ionic liquid is added to the solution to prepare a casting liquid. The casting liquid is subjected to casting in a cavity formed by an opening of a frame and a sheet member, each of which is composed of PTFE (fluorine-containing polymer material). Thereafter, the solvent is removed to yeild a proton conductor membrane.
Abstract:
Embodiments of the invention generally provide an electrochemical plating cell having a cell body configured to contain a plating solution therein. An anode assembly is immersed in a fluid solution contained in the cell body, the anode being positioned in an anode compartment of the cell body. A cathode assembly is positioned in a cathode compartment of the cell body, and a multilevel diffusion differentiated permeable membrane is positioned between the anode compartment and the cathode compartment. The multilevel diffusion differentiated permeable membrane is generally configured to separate the anode compartment from the cathode compartment, while allowing a fluid solution to flow therethrough in a direction from the anode compartment towards the cathode compartment.
Abstract:
A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a conductive polishing pad and an electrode having a membrane disposed therebetween. The membrane is orientated relative the conductive pad in a manner that facilitates removal of entrained gas from electrolyte flowing towards the conductive pad. The apparatus may be part of an electro-chemical polishing station that may optionally be part of a system that includes chemical mechanical polishing stations.
Abstract:
A process for producing one or more metals from a mineral feedstock (12) is defined. The mineral is fed to a leaching apparatus (10) wherein it is contacted with electrolyte (14). The leaching apparatus has zones of decreasing oxidation potential (17, 18, 19, 20) respectively. A stream of electrolyte (14A) is removed from zone (20) and is treated to remove impurities and unwanted metals in treatment unit (25A), prior to metal recovery by electrolysis. The electrolyte after electrolysis is then returned to the leaching unit (10). A second electrolyte stream (14B) may be removed from zone (19) for recovery of additional metals. The electrolyte (14B) is treated to remove impurities and any unwanted metals in treatment unit (25B), prior to metal recovery by electrolysis. The electrolyte after electrolysis is returned to leaching unit (10). The process enables the leaching of difficult to leach minerals, including gold, and can produce one or more metals of high purity.
Abstract:
A porous composite material for diaphragms for high-output electrochemical cells such as lithium cells. The material is a layered structure of fluoropolymer and polyolefin that provides a shut-down capability that safeguards against dangerous failure of the cell, such as a rupture or fire that may result from a short-circuit or other high-rate electric discharge.
Abstract:
In a process for the electrolytic production of magnesium by the molten salt electrolysis of magnesium chloride using a molten salt cell bath comprised mainly of one or more salts selected from alkali metal chlorides and alkaline earth metal chlorides, the molten salt bath is enriched with magnesium chloride by suspending a magnesium oxide and/or magnesium carbonate powder to form a molten suspension and passing a chlorine-containing gas through the molten suspension at a temperature of 600.degree.-900.degree. C. so as to react the suspended powder with chlorine to form magnesium chloride. The resulting molten salt enriched with magnesium chloride can be directly introduced into the cell for electrolysis, thereby eliminating moisture absorption by the highly hygroscopic magnesium chloride. A pure magnesium can be produced with a high yield and improved current efficiency.
Abstract:
This invention is directed to the process and apparatus for making a polymeric membrane containing non-quaternized amine groups, with the polymer having substantially zero amounts of non-polymerized solvents. The resulting membrane is a more efficient anion membrane for recovering acid from acidic solutions by electrodialysis than the corresponding membranes containing quaternized amine groups. The membrane is made by polymerizing a monomeric mixture on a reinforcing cloth structure, which monomeric mixture is void of non-polymerizing solvents.
Abstract:
This invention includes apparatus and method for providing a support mechanism for electrode assemblies including positioning means of electrically nonconductive material having an inside surface forming an internal cavity, means for passing a heat transfer fluid through the cavity along the inside surface, and wire or fiber in the path of the fluid. The wire or fiber is positioned essentially normal to the flow of the fluid and is positioned to provide a substantially unobstructed line of sight between the wire or fiber and the inside surface, the wire or fiber having a high radiative absorptance and emittance.
Abstract:
The process according to the invention concerns the production of polyvalent metals such as titanium by electrolysis of molten halides.It comprises controlling the permeability of the diaphragm which separates the anolyte from the catholyte, by causing growth or re-dissolution of a deposit of the metal to be produced.The process is applied in particular to the production of titanium by electrolysis from TiCl.sub.4.
Abstract:
An electrolytic cell for the electrochemical separation of selected metals from electrodissociatable compounds thereof in the molten state utilizing as electrode separator a plurality of solid electrolyte tubes which, under the influence of an electrical potential, are permeable to the flow of selected cations, but impermeable to fluids and the flow of anions and other cations.