Abstract:
A resonance inductor is connected with a charging path through which an ignition condenser is charged; a first switching device controls charging of the ignition condenser; discharging of the ignition condenser is controlled by a second switching device whose collector terminal is connected with the other end of the primary coil of an ignition coil unit and whose emitter terminal is connected with the negative-polarity terminal of the ignition condenser; a clamp diode is connected between the one end of the primary coil and the collector terminal of the second switching device.
Abstract:
A device for cooling of an annular wall of a turbomachine combustion chamber provided with micro-perforations, and in particular the cooling of a region of the wall facing a wake induced by an ignition plug, the device includes, a deflector designed to divert air immersing the ignition plug towards a median plane of the wake and towards the annular wall of the combustion chamber, so as to increase the air pressure within the wake in proximity to the annular wall.
Abstract:
A high-frequency discharge ignition apparatus is obtained that can stably make a high-frequency current flow into a spark discharge path and efficiently forms large discharge plasma. The high-frequency discharge ignition apparatus is configured with an ignition plug, a spark discharge path generation device that generates a high voltage and supplies the generated high voltage to the ignition plug so as to form a spark discharge path in the gap of the ignition plug, a voltage boosting device that boosts the voltage of an AC current, and a high-frequency current supply apparatus that supplies an AC current to the spark discharge path formed in the gap by way of the voltage boosting device.
Abstract:
The size of the plasma produced by a plasma-generating device that generates plasma using electromagnetic (EM) radiation is enlarged. The plasma-generating device has an EM-wave-generating device that generates EM radiation, a radiation antenna that emits the EM radiation supplied from the EM-wave-generating device to a target space, and a receiving antenna located near the radiation antenna. The receiving antenna is grounded such that an adjacent portion that is close to the radiation antenna has a higher voltage while the EM radiation is emitted from the radiation antenna. The plasma-generating device generates plasma in the target space near the radiation antenna and the adjacent portion by emitting EM radiation from the radiation antenna.
Abstract:
An internal combustion engine control apparatus includes: an ignition coil including a primary coil and a secondary coil that are magnetically coupled to each other; a first switch element for turning on and off a current to the primary coil; and a spark plug, for igniting an air-fuel mixture in an internal combustion engine by using a spark discharge caused by switching the first switch element from the ON state to the OFF state. The internal combustion engine control apparatus is configured to: determine occurrence of one of an abnormality in a discharge voltage and a misfire of the spark plug, when the calculated time duration in which a voltage of the primary coil after the switching of the first switch element from the ON state to the OFF state is above a predetermined comparison reference voltage does not fall within an allowable range.
Abstract:
A fuel property determination apparatus for an internal combustion engine is applied to an internal combustion engine that is equipped with an ignition plug and an ignition timing controller. An electronic control unit provided in the fuel property determination apparatus executes a determination process of making a determination on a property of a fuel supplied to the internal combustion engine based on an ignition sufficiency ratio, during a predetermined period after startup of the internal combustion engine. The electronic control unit is configured to determine that the property of the fuel is heavy when a determination index value that is obtained by subjecting the ignition sufficiency ratio to a smoothing process is equal to or larger than a predetermined threshold. The electronic control unit is configured to set a smoothing coefficient to a value corresponding to each of a first period, a second period, and a third period.
Abstract:
A method of applying a coating to a spark plug insulator comprises the steps of forming a slurry solution and applying the slurry solution as a first coating to an insulative sleeve configured for use in a spark plug. The method further includes the step of heat treating the insulative sleeve to a temperature of between about 500 degrees Celsius and about 1000 degrees Celsius for between about 10 minutes and about 2 hour(s). Still further, the method includes the step of applying a second coating overlying at least a portion of the first coating, wherein the second coating comprises an organic binder.
Abstract:
An outboard motor includes an engine and a casing. The engine includes a cylinder unit, ahead cover and an ignition coil device. The cylinder unit is made of metal. The head cover is made of resin and is attached to the cylinder unit. The ignition coil device is attached to the head cover. The casing is made of resin and covers the engine. The coil ignition device includes a radiated noise reducer portion. The radiated noise reducer portion is configured to reduce noise that is radiated from the ignition coil device.
Abstract:
A resonance inductor is connected with a charging path through which an ignition condenser is charged; a first switching device controls charging of the ignition condenser; discharging of the ignition condenser is controlled by a second switching device whose collector terminal is connected with the other end of the primary coil of an ignition coil unit and whose emitter terminal is connected with the negative-polarity terminal of the ignition condenser; a clamp diode is connected between the one end of the primary coil and the collector terminal of the second switching device.
Abstract:
An engine control device 13 that cannot output a control signal to an electromagnetic wave emission device 30 is used to emit electromagnetic wave at an appropriate timing from the device 30 to a combustion chamber 10. A signal processing device 40 is connected to the engine control device 13 that outputs an ignition signal for instructing an ignition device 12 of the engine 20 to ignite fuel air mixture in the combustion chamber 10 of the engine 20. The signal processing device 40, upon receiving the ignition signal, outputs to the electromagnetic wave emission device 30 an electromagnetic wave drive signal that determines based on the ignition signal an emission period, which is a period for the electromagnetic wave emission device 30 to emit an electromagnetic wave to the combustion chamber 10, so that an ignition operation is performed during the emission period of the electromagnetic wave.