Abstract:
A semiconductor-on-insulator (SOI) wafer. The wafer includes a silicon substrate, a buried oxide (BOX) layer disposed on the substrate, and an active layer disposed on the box layer. The active layer has an upper silicon layer disposed on a silicon-germanium layer. The silicon-germanium layer is disposed on a lower silicon layer. The silicon-germanium of the silicon-germanium layer is strained silicon-germanium and is about 200 Å to about 400 Å thick.
Abstract:
A semiconductor device includes a group of fin structures. The group of fin structures includes a conductive material and is formed by growing the conductive material in an opening of an oxide layer. The semiconductor device further includes a source region formed at one end of the group of fin structures, a drain region formed at an opposite end of the group of fin structures, and at least one gate.
Abstract:
A method of manufacturing an integrated circuit utilizes solid phase epitaxy to form an elevated source region and an elevated drain region. The method includes providing a mask structure including spacers, removing the mask structure, providing an amorphous semiconductor material and crystallizing the amorphous semiconductor material without damaging a high-k gate dielectric layer. The semiconductor material can be silicided. A shallow source/drain implant can also be provided.
Abstract:
Micro-miniaturized semiconductor devices having transistors with abrupt high concentration shallow source/drain extensions are fabricated by sequentially forming deep source/drain regions, pre-amorphizing intended shallow source/drain extension regions, ion implanting impurities into the pre-amorphized regions and then laser thermal annealing to crystallize the pre-amorphized regions and to activate the source/drain extensions. Embodiments include forming the deep source/drain regions using removable sidewall spacers on the gate electrode, removing the sidewall spacers, forming the ion implanted pre-amorphized source/drain exension implants, forming laser transparent oxide sidewall spacers on the gate electrode and laser thermal annealing through the oxide laser transparent sidewall spacers to selectively activate the source/drain extensions.
Abstract:
A method of manufacturing an integrated circuit includes providing an amorphous semiconductor material including germanium, annealing the amorphous semiconductor material, and doping to form a source location and a drain location. The semiconductor material containing germanium can increase the charge mobility associated with the transistor.
Abstract:
A method for forming one or more FinFET devices includes forming a source region and a drain region in an oxide layer, where the oxide layer is disposed on a substrate, and etching the oxide layer between the source region and the drain region to form a group of oxide walls and channels for a first device. The method further includes depositing a connector material over the oxide walls and channels for the first device, forming a gate mask for the first device, removing the connector material from the channels, depositing channel material in the channels for the first device, forming a gate dielectric for first device over the channels, depositing a gate material over the gate dielectric for the first device, and patterning and etching the gate material to form at least one gate electrode for the first device.
Abstract:
A method of manufacturing a semiconductor device, comprising steps of: (a) providing a semiconductor substrate comprising a strained lattice semiconductor layer at an upper surface thereof and having a pre-selected amount of lattice strain; (b) forming a device structure in the semiconductor substrate by a process comprising forming at least one amorphous region in at least one portion of the strained lattice semiconductor layer; and (c) thermal annealing at a minimum temperature sufficient to effect epitaxial re-crystallization of the at least one amorphous region to re-form a strained lattice semiconductor layer having substantially the pre-selected amount of lattice strain, whereby strain relaxation of the strained lattice semiconductor arising from thermal annealing is substantially eliminated or minimized.
Abstract:
A semiconductor device and method of manufacture. A liner composed of a high-K material having a relative permittivity of greater than 10 is formed adjacent at least the sidewalls of a gate. Sidewall spacers are formed adjacent the gate and spaced apart from the gate by the liner. The liner can be removed using an etch process that has substantially no reaction with a gate dielectric of the gate.
Abstract:
A method of manufacturing a semiconductor device includes thermal annealing source/drain regions with a laser, measuring a depth of the source/drain regions, and adjusting a parameter of the laser used in the thermal annealing process. After the laser is adjusted, the source/drain regions are laser thermal annealed again until a desired depth of the source/drain regions is obtained. An apparatus for processing a semiconductor device includes a chamber, a laser, a measuring device, and a controller. The semiconductor device is positioned within the chamber for processing. The laser is used to laser thermal anneal the semiconductor device within the chamber. The measuring device measures a depth of source/drain regions in the semiconductor device when the semiconductor device is within the chamber, and the controller receives measurement information from the measuring device and adjusts parameters of the laser.
Abstract:
A transistor device formed on a semiconductor-on-insulator (SOI) substrate with a buried oxide (BOX) layer disposed thereon and an active layer disposed on the BOX layer having active regions defined by isolation trenches. The device includes a gate defining a channel interposed between a source and a drain formed within the active region of the SOI substrate. Further, the device includes a plurality of thin silicide layers formed on the source and the drain. Additionally, at least an upper silicide layer of the plurality of thin silicide layers extends beyond a lower silicide layer. Further still, the device includes a disposable spacer used in the formation of the device. The device further includes a second plurality of thin silicide layers formed on a polysilicon electrode of the gate.