Abstract:
A method and system for automatic signalling an alert when a possible intrusion occurs in an industrial automation and control system, based on security events which occur in the industrial automation and control system or are externally fed into the system. The method includes the steps of: (a) determining a correlation of a first and second security event and storing the correlation in an event database, wherein the correlation includes a probability that the first security event is followed by the second security event within a normalised time period, (b) identifying a candidate event as the first security event, based on event information of the candidate event, upon occurrence of the candidate event, (c) classifying the candidate event as anomalous when the probability exceeds a predetermined threshold and no second security event follows the candidate event within the normalised time period, and (d) signalling the alert indicating the candidate event.
Abstract:
A multi-terminal surge arrester which includes an active part extending along a longitudinal direction of the surge arrester, a first electrode resting against a first end of the active part, and a second electrode resting against a second end of the active part, which second end opposes the first end in the longitudinal direction of the surge arrester. The surge arrester further includes an insulating fixing device mechanically connecting and fixing the first electrode and the second electrode, and an insulating housing arranged around the active part. The active part includes at least two metal-oxide based varistor elements and a further electrode arranged between the at least two varistor elements, which further electrode provides an externally accessible electrical connection. Therein, the surge arrester is adapted for being insulated by surrounding air.
Abstract:
A converter system for electrically driving a vehicle, including a grid-side converter, a DC link with at least a first and second potential conductors, and a motor-side converter. The motor-side converter allows a bidirectional flow of energy. The grid-side converter has a single phase on the input side and is connected to a supply grid. The grid-side converter is unidirectional and allows a flow of energy from the supply grid into the DC link. The DC link connects the grid-side converter to the motor-side converter and has a first electrical energy storage between the first and second potential conductors. The electrical energy storage is connected to the DC link via an electrical connection. The flow of energy from the DC link into the further electrical energy storage and the flow of energy from the further electrical energy storage into the DC link is able to be controlled.
Abstract:
A method and apparatus for earth fault in power high and/or medium voltage system may enhance a protection system for special technical task, which is to measure residual current, the invention is, that for earth fault protection in power system or a part of power system, for example, but not limited to, cable connectors, wherein residual current is determined indirectly by the calculation from the phase current values, obtained from the output signals of Rogowski-coil based current sensors.
Abstract:
A coil actuator for a low and medium voltage switching apparatus comprising a coil electromagnet (2), a power and control unit (3), which comprises a power circuit (31) operatively connected to said coil electromagnet (2) and a processing unit (32) operatively connected to said power circuit and controlling the trip of said coil electromagnet (2) through said power circuit (31). The power and control unit (3) comprises an optical port (30), which is suitable to be operatively connected to an optical fiber cable (112), and a first detection unit (33), which is operatively connected to said optical port and to said processing unit. The first detection unit (33) is suitable to receive a light signal (L) from said optical port and to output a first detection signal (D1) indicative of the presence of an arc fault, depending on said light signal. The processing unit (32) is suitable to receive said first detection signal (D1) from said first detection unit and to control the trip of said coil electromagnet (2), depending on said first detection signal. In a further aspect, the invention relates to an arc fault coil suppression device including said coil actuator.
Abstract:
A hardened inductive device and systems and methods for protecting the inductive device from impact is provided. The inductive device is hardened with protective coating and/or an armor steel housing. The hardened inductive device is protected from impact by an object such as a bullet and leakage of dielectric fluid is prevented. Acoustic and vibration sensors are provided to detect the presence and impact, respectively, of an object in relation to the inductive device housing. The measurements of the acoustic and vibration sensors are compared to thresholds for sending alarms to the network control center and initiating shut-down and other sequences to protect the active part. The acoustic sensor results are utilized to determine the location of origin of the projectile.
Abstract:
A rotating electric machine and a method of magnetizing a rotor of a brushless rotating electric machine are disclosed, the method including forming a stationary magnetic field, rotating a rotor of a magnetizing machine in the stationary magnetic field for producing alternating current, rectifying the alternating current with a controllable bridge situated in the rotor, receiving control instructions wirelessly to the rotor, controlling a magnitude of current with the controllable bridge based on the control instructions, and feeding the controlled current to the magnetizing winding of the rotating electric machine.
Abstract:
An insulating device includes a body portion including a first surface feature extending between a first surface end and a second surface end. The first surface end defines a first surface cross-sectional size. The second surface end defines a second surface cross-sectional size. The second surface cross-sectional size is less than the first surface cross-sectional size. The body portion includes a second surface feature extending between a third surface end and a fourth surface end. The third surface end defines a third surface cross-sectional size. The fourth surface end defines a fourth surface cross-sectional size. The fourth surface cross-sectional size is less than the third surface cross-sectional size. The insulating device includes a flange portion having a flange wall. The flange wall includes a first mating portion that engages the first surface feature and a second mating portion that engages the second surface feature of the body portion.
Abstract:
An arrangement for reading out an analog voltage signal includes a voltage signal input for applying the analog voltage signal thereto, a reference unit configured to generate an analog reference voltage, and a converting unit configured to convert an analog input signal into a digital output signal. To enable online self-calibration of the arrangement, the arrangement includes a superposition unit configured to receive the analog voltage signal and the analog reference voltage. The superposition unit includes a modulation unit configured to generate a modulated reference voltage from the analog reference voltage. The superposition unit is configured to generate a combined analog signal by superimposing the modulated reference voltage onto the analog voltage signal, and to forward the combined analog signal to the converting unit.
Abstract:
A multifunctional measuring device, such as for measuring a current in a primary current conductor in a medium voltage switchgear is disclosed which includes a housing with an aperture for accommodation of the primary current conductor; an inner winding accommodated around the aperture inside of the housing for a measurement of current in a primary current conductor; and an external winding wound on the housing around the aperture for another current measurement.