摘要:
Embodiments relate to a semiconductor device and a method for fabricating a semiconductor device. In embodiments, the method may include forming a gate dielectric layer on an active region of a semiconductor substrate defined by an isolation region to form a gate conductive layer pattern, etching the isolation region of the semiconductor substrate where the gate conductive layer pattern is formed, to form an isolation trench, forming a polyoxide layer on the gate conductive layer pattern and a sidewall oxide layer in the trench by carrying out an oxidation process, forming a spacer nitride layer on the polyoxide layer and a liner nitride layer on the sidewall oxide layer by carrying out a nitride layer forming process, and forming a dielectric layer on an entire surface of the resultant structure to fill the trench.
摘要:
Disclosed is an anti-fatigue and nutritious tonic agent containing powder of wild ginseng, optionally in admixture with a herb medicine, or water extract of the powder, which has remarkably enhanced anti-fatigue, and nutrition and tonic effects as compared with agents containing cultivated ginseng.
摘要:
Provided are a 3-terminal MIT switch which can easily control a discontinuous MIT jump and does not need a conventional gate insulating layer, a switching system including the 3-terminal MIT switch, and a method of controlling an MIT of the 3-terminal MIT switch. The 3-terminal MIT switch includes a 2-terminal MIT device, which generates discontinuous MIT in a transition voltage, an inlet electrode and an outlet electrode, which are respectively connected to each terminal of the 2-terminal MIT device, and a control electrode, which is connected to the inlet electrode and includes an external terminal separated from an external terminal of the inlet electrode, wherein an MIT of the 2-terminal MIT device is controlled according to a voltage or a current applied to the control electrode. The switching system includes the 3-terminal MIT switch, a voltage source connected to the inlet electrode, and a control source connected to the control electrode.
摘要:
Provided are a MIT device self-heating preventive-circuit that can solve a self-heating problem of a MIT device and a method of manufacturing a MIT device self-heating preventive-circuit integrated device. The MIT device self-heating preventive-circuit includes a MIT device that generates an abrupt MIT at a temperature equal to or greater than a critical temperature and is connected to a current driving device to control the flow of current in the current driving device, a transistor that is connected to the MIT device to control the self-heating of the MIT device after generating the MIT in the MIT device, and a resistor connected to the MIT device and the transistor.
摘要:
Provided are a circuit for continuously measuring a discontinuous metal-insulator transition (MIT) of an MIT element and an MIT sensor using the circuit. The circuit comprises a to-be-measured object unit including the MIT element having a discontinuous MIT occurring at the transition voltage thereof, a power supply unit applying a predetermined pulse current or voltage signal to the to-be-measured object unit, a measurement unit measuring the discontinuous MIT of the MIT element, and a microprocessor controlling the power supply unit and the measurement unit. The discontinuous MIT measurement circuit continuously measures the discontinuous MIT of the MIT element, and thus it can be used as a sensor for sensing a variation in an external factor.
摘要:
Embodiments relate to a method for fabricating a semiconductor device. In embodiments, the method may include forming a gate dielectric layer on an active region of a semiconductor substrate defined by an isolation region to form a gate conductive layer pattern, etching the isolation region of the semiconductor substrate where the gate conductive layer pattern is formed, to form an isolation trench, forming a polyoxide layer on the gate conductive layer pattern and a sidewall oxide layer in the trench by carrying out an oxidation process, forming a spacer nitride layer on the polyoxide layer and a liner nitride layer on the sidewall oxide layer by carrying out a nitride layer forming process, and then forming a dielectric layer on an entire surface of the resultant structure to fill the trench.
摘要:
Provided are a temperature sensor using a metal-insulator transition (MIT) device subject to abrupt MIT at a specific temperature and an alarm including the temperature sensor. The abrupt MIT device includes an abrupt MIT thin film and at least two electrode thin films that contacts the abrupt MIT thin film. The abrupt MIT device generates abrupt metal-insulator transition at a specific transition temperature. The alarm includes a temperature sensor comprising an abrupt MIT device, and an alarm signaling device serially connected to the temperature sensor. Accordingly, the alarm can be manufactured to have a simple circuit and be of a small size by including the temperature sensor using an abrupt MIT device.
摘要:
Provided are an abrupt metal-insulator transition (MIT) device for bypassing super-high voltage noise to protect an electric and/or electronic system, such as, a high-voltage switch, from a super-high voltage, a high-voltage noise removing circuit for bypassing the super-high voltage noise using the abrupt MIT device, and an electric and/or electronic system including the high-voltage noise removing circuit. The abrupt MIT device includes a substrate, a first abrupt MIT structure, and a second abrupt MIT structure. The first and second abrupt MIT structures are formed on an upper surface and a lower surface, respectively, of the substrate. The high-voltage noise removing circuit includes an abrupt MIT device chain connected in parallel to the electric and/or electronic system to be protected. The abrupt MIT device chain includes at least two abrupt MIT devices serially connected to each other.
摘要:
Disclosed are an MIM (Metal-Insulator-Metal) capacitor and a method of manufacturing the same. The MIM capacitor includes: a lower metal layer and a lower metal interconnection on a substrate; a barrier metal layer on the lower metal layer; an insulating layer on the barrier metal layer; an upper metal layer on the insulating layer; an interlayer dielectric layer having a via hole on the lower metal interconnection; and a plug in the via hole.