Abstract:
A method of isolating nucleic acid from a sample containing nucleic acid is provided. The method includes contacting the sample with a bifunctional material that contains an amino group and a carboxyl group and is positively charged at a first pH to allow binding of the nucleic acid to the bifunctional material; and extracting the nucleic acid at a second pH higher than the first pH from the complex.
Abstract:
Provided herein are a method and an apparatus for isolating nucleic acids from cells. The method comprises introducing carbon nanotubes (CNTs) and silica beads into a solution containing the cells, irradiating the solution with a laser beam disrupt the cells releasing the nucleic acids from the disrupted cells, thereby binding the nucleic acids to the silica beads, and adding a nucleic acid eluting solution to the silica beads to which the nucleic acids are bound, to elute the nucleic acids from the silica beads.
Abstract:
This invention provides a microfluidic device comprising an inlet and an outlet which are connected with each other through a microchannel, wherein a polymerized hydrophobic porous polymer is bonded to magnetic beads and to the walls of the microchannel. The invention is further directed to methods of making and using the microfluidic device.
Abstract:
Provided is a method of purifying nucleic acids using a metal-ligand complex, the method comprising: immobilizing the metal-ligand complex on a solid support; bringing a sample containing the nucleic acid into contact with the immobilized complex on the solid support to bind the nucleic acid to the complex; and adding a solution containing a chelate capable of removing the metal to elute the nucleic acid bound to the complex. The nucleic acids can be efficiently purified using a metal-ligand complex interacting with a base of the nucleic acid instead of interacting with a phosphoric acid of the nucleic acid to selectively bind the nucleic acid, and using a chelator capable of removing the metal to elute the nucleic acid.
Abstract:
Provided is a hybridization system for hybridizing a biochip including: a chamber device including at least a hybridization chamber including a support for a biochip and a first cover having a sample inlet; an agitation device including: two air channels connected to ends of the hybridization chamber; two valves disposed in the air channels; an integrated air channel to which the two air channels are connected; and an air pump disposed in the integrated air channel; and a washing and drying device including: a flow channel connected to one of the two air channels through a branched valve; a flow pump disposed in the flow channel; and a buffer inlet disposed opposite the flow channel.
Abstract:
Provided is an agitation device used to agitate a solution in a hybridization chamber, the agitation device including: the hybridization chamber; first and second air channels connected to ends of the hybridization chamber; a first valve disposed in the first air channel; a second valve disposed in the second air channel; an integrated air channel connecting the first and second air channels; and a pump disposed in the integrated air channel. The agitation device is suitable for effective diffusion of a sample when performing hybridization using a DNA chip. Therefore, a probe can be effectively hybridized with a target material.
Abstract:
Provided is a method of isolating and purifying nucleic acids using an immobilized hydrogel or polyethylene glycol (PEG)-hydrogel copolymer. The method includes: immobilizing a functional group-containing hydrogel or PEG-hydrogel copolymer on a substrate; adding a mixed sample solution containing a salt and nucleic acids to the hydrogel- or PEG-hydrogel copolymer-immobilized substrate to bind the nucleic acids to the hydrogel or the PEG-hydrogel copolymer; washing the nucleic acid-bound hydrogel or PEG-hydrogel copolymer; and eluting the nucleic acids from the hydrogel or the PEG-hydrogel copolymer using an elution solvent. Therefore, binding and elution of nucleic acids can be performed even with no addition of a separate chemical substance, and an effect on a subsequent process such as PCR can be minimized. Furthermore, the amount and intensity for binding nucleic acids can be adjusted according to PEG concentration, and the presence of a hydrogel compound on a substrate enables patterning.
Abstract:
A method for forming a filter in a fluid flow path in a microfluidic device is provided. The method includes introducing a photopolymerization reaction solution into the microfluidic device; and performing polymerization of photopolymerization reaction solution to form a filter in the fluid flow path in a microfluidic device.
Abstract:
This invention provides a microfluidic device comprising an inlet and an outlet which are connected with each other through a microchannel, wherein a polymerized hydrophobic porous polymer is bonded to magnetic beads and to the walls of the microchannel. The invention is further directed to methods of making and using the microfluidic device.