Abstract:
A light emitting device includes a light emitting element comprising a nitride semiconductor and a phosphor that can absorb a part of light emitted from the light emitting element and can emit light of a wavelength different from that of the absorbed light. The phosphor comprises a silicate phosphor comprising three alkali earth metals.
Abstract:
The light emitting device has a light emitting diode which is made of a nitride semiconductor and a phosphor which absorbs a part of lights emitted from the light emitting diode and emits different lights with wavelengths other than those of the absorbed lights. The phosphor is made of alkaline earth metal silicate fluorescent material activated with europium.
Abstract:
A luminous body of prolonged fluorescence lifetime characterized by comprising not only an activator but also at least one coactivator selected from the group consisting of La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Sn, Sb and analogues thereof as a further luminescent center for enhancing the thermostability of luminous body. This luminous body excels in thermostability and fluorescence lifetime, so that it is useful as a luminous body for LED.
Abstract:
The invention relates to a light source comprising a light-emitting element, which emits light in a first spectral region, and comprising a luminophore, which comes from the group of alkaline-earth orthosilicates and which absorbs a portion of the light emitted by the light source and emits light in another spectral region. According to the invention, the luminophore is an alkaline-earth orthosilicate, which is activated with bivalent europium and whose composition consists of: (2-x-y)SrOx(Ba, Ca)O(1-a-b-c-d)SiO2aP2O5bAl2O3cB2O3dGeO2:yEu2+ and/or (2-x-y)BaOx((Sr, Ca)O(1-a-b-c-d)SiO2aP2O5bAl2O3cB2O3dGeO2:yEu2+. The desired color (color temperature) can be easily adjusted by using a luminophore of the aforementioned type. The light source can contain an additional luminophore selected from the group of alkaline-earth aluminates, activated with bivalent europium and/or manganese, and/or can contain an additional red-emitting luminophore selected from the group Y(V, P, Si)O4:Eu or can contain alkaline-earth magnesium disilicate.
Abstract translation:本发明涉及一种光源,其包括发光元件,该发光元件在第一光谱区域中发光,并且包括来自所述碱土原硅酸盐并且吸收由所述光发射的光的一部分的发光体 来源并在另一个光谱区域发光。 根据本发明,发光体是碱土原硅酸盐,其由二价铕活化,其组成由以下组成:(2-xy)SrO x(Ba,Ca)O(1-abcd)SiO 2 a P 2 O 5 bAl 2 O 3 cB 2 O 3 dGeO 2:yEu 2+ 和/或(2-xy)BaOx((Sr,Ca)O(1-abcd)SiO 2aP 2 O 5 bAl 2 O 3 cB 2 O 3 dGeO 2:yEu 2+,可以通过使用上述类型的发光体容易地调节所需的颜色(色温) 光源可以含有选自由二价铕和/或锰活化的碱土铝酸盐组的另外的发光体,和/或可以含有选自Y(V,P,Si)O 4组的另外的发红光源 :Eu或可含有二硅酸碱土镁。
Abstract:
The present invention relates to variously activated luminescent metaborates having luminescence properties improved in comparison with conventional luminescent substances. Moreover, the activated luminescent metaborates have outstanding stability under the influence of short-wave UV radiation so that they are preferably suitable for use in luminescent screens, in particular, low-pressure mercury vapor discharge lamps of all types and designs. The luminescent substances of the present invention are based on rare earth metal borates of the formula:(Y,La).sub.1-x-y-z Ce.sub.x Gd.sub.y Tb.sub.2 (Mg,Zn,Cd).sub.1-p Mn.sub.p B.sub.5-q-s (Al,Ga).sub.q (X).sub.s O.sub.10wherein X is Si, Ge, P, Zr, V, Nb, Ta, W or the sum of a plurality of the stated elements and p, q, s, x, y and z are alternatively .ltoreq.1.
Abstract:
The present invention provides a light emitting device comprising a first light emitting portion that emits white light at a color temperature of 6000K or more and a second light emitting portion that emits white light at a color temperature of 3000K or less, which include light emitting diode chips and phosphors and are independently driven. The present invention has an advantage in that a light emitting device can be diversely applied in a desired atmosphere and use by realizing white light with different light spectrums and color temperatures. Particularly, the present invention has the effect on health by adjusting the wavelength of light or the color temperature according to the circadian rhythm of humans.
Abstract:
Disclosed herein is a light emitting device including at least three light emitting diodes having different peak emission wavelengths to primarily emit light in a blue, green or red wavelength range, and a wavelength-conversion means to convert primary light into secondary light in a visible light wavelength range. The light emitting device of the current invention has a high color temperature of 2,000 to 8,000 K or 10,000 K and a high color rendering index of 90 or more, and emits yellow-green light or orange light having a wide emission wavelength range. Since the light emitting device having high color temperature and excellent color rendering properties can easily realize desired emission on the color coordinate system, it is applicable to mobile phones, notebook computers, and keypads or backlight units for various electronic products, and in particular, automobiles and exterior and interior lighting fixtures.
Abstract:
The present invention relates to a light emitting device comprising at least one light emitting diode which emits light in a predetermined wavelength region, copper-alkaline earth metal based inorganic mixed crystals activated by rare earths, which include copper-alkaline earth silicate phosphors which are disposed around the light emitting diode and absorb a portion of the light emitted from the light emitting diode and to emit light different in wavelength from the absorbed light.
Abstract:
A light emitting device having oxyorthosilicate luminophores is disclosed. The light emitting device includes a light emitting diode and luminescent substances disposed around the light emitting diode, to absorb at least a portion of light emitted from the light emitting diode and emitting light having different wavelength from that of the absorbed light. The luminescent substances have Eu2+-doped silicate luminophores in which solid solutions in the form of mixed phases between alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates are used as base lattices for the Eu2+activation leading to luminescence. The luminescent substances are used as radiation converters to convert a higher-energy primary radiation, for example, ultra violet (UV) radiation or blue light, into a longer-wave visible radiation and are therefore preferably employed in corresponding light-emitting devices.
Abstract:
A light emitting device is disclosed. The light emitting device may include a light emitting diode (LED) for emitting light and phosphor adjacent to the LED. The phosphor may be excitable by light emitted by the LED and may include a first compound having a host lattice comprising first ions and oxygen. In one embodiment, the host lattice may include silicon, the copper ions may be divalent copper ions and first compound may have an Olivin crystal structure, a β-K2SO4 crystal structure, a trigonal Glaserite (K3Na(SO4)2) or monoclinic Merwinite crystal structure, a tetragonal Ackermanite crystal structure, a tetragonal crystal structure or an orthorhombic crystal structure. In another embodiment, the copper ions do not act as luminescent ions upon excitation with the light emitted by the LED.