Abstract:
A semiconductor substrate which contains a buried grid-like region of enhanced concentration of an impurity type opposite to that of the semiconductor substrate; and method for the fabrication thereof which includes providing beneath the upper surface of a semiconductor substrate at a first depth a continuous region of a first impurity type which is the same as that of the semiconductor substrate and wherein at preselected isolated discontinuous locations beneath said surface the first impurity type is at a second depth beneath said surface which is greater than said first depth, and then providing beneath said first depth and substantially coincident with said second depth, a second impurity type opposite to that of the first type and at a dosage level lower than the dosage level of the first impurity type so as to provide a grid-like region of enhanced concentration of impurity type opposite to that of the semiconductor substrate for collecting excess minority carriers in the semiconductor substrate.
Abstract:
An array of contact pads on a semiconductor structure has a pitch less than twice an overlay tolerance of a bonding process employed to vertically stack semiconductor structures. A set of contact pads within the area of overlay variation for a matching contact pin may be electrically connected to an array of programmable contacts such that one programmable contact is connected to each contact pad within the area of overlay variation. One contact pad may be provided with a plurality of programmable contacts. The variability of contacts between contact pins and contact pads is accommodated by connecting or disconnecting programmable contacts after the stacking of semiconductor structures. Since the pitch of the array of contact pins may be less than twice the overlay variation of the bonding process, a high density of interconnections is provided in the vertically stacked structure.
Abstract:
A three-terminal switching device for use in integrated circuit devices, including a phase change material (PCM) disposed in contact between a first terminal and a second terminal; a heating device disposed in direct electrical contact between said second terminal and a third terminal, said heating device positioned proximate said PCM, and configured to switch the conductivity of a transformable portion of said PCM between a lower resistance crystalline state and a higher resistance amorphous state; and an insulating layer configured to electrically isolate said heater from said PCM material, and said heater from said first terminal.
Abstract:
There is provided a strata manager within a 3D chip stack having two or more strata. The strata manager includes a plurality of scannable configuration registers, each being arranged on a respective one of the two or more strata for storing a set of bits. The set of bits is configured to program an operation of a corresponding one of the two or more strata on which the set of bits is stored or a device thereon. Additionally, a stratum identifier within a 3D stack and stack-wide scan circuit within a 3D stack are provided.
Abstract:
There is provided a connection configuration for a multiple layer chip stack having two or more strata. Each of the two or more strata has multiple circuit components, a front-side and a back-side. The connection configuration includes a connection pair having as members a front-side connection and a backside connection unconnected to the front-side connection. The front-side connection and the backside connection are co-located with respect to each other on a given stratum from among the two or more strata, and are respectively connected to different ones of the multiple circuit components on the given stratum. At least one of the front-side connection and the backside connection is also connected to a particular one of the multiple circuit components on an adjacent stratum to the given stratum from among the two or more strata.
Abstract:
A switching circuit includes a plurality of three-terminal PCM switching devices connected between a voltage supply terminal and a sub-block of logic. Each of the switching devices includes a PCM disposed in contact between a first terminal and a second terminal, a heating device disposed in contact between the second terminal and a third terminal, the heating device positioned proximate the PCM, and configured to switch the conductivity of a transformable portion of the PCM between a lower resistance state and a higher resistance state; and an insulating layer configured to electrically isolate the heater from said PCM material, and the heater from the first terminal. The third terminal of a first of the PCM switching devices is coupled to a set/reset switch, and the third terminal of the remaining PCM switching devices is coupled to the second terminal of an adjacent PCM switching device in a cascade configuration.
Abstract:
A programmable link structure for use in three dimensional integration (3DI) semiconductor devices includes a via filled at least in part with a phase change material (PCM) and a heating device proximate the PCM. The heating device is configured to switch the conductivity of a transformable portion of the PCM between a lower resistance crystalline state and a higher resistance amorphous state. Thereby, the via defines a programmable link between an input connection located at one end thereof and an output connection located at another end thereof.
Abstract:
A switching circuit configured for controlling static power consumption in integrated circuits includes a plurality of three-terminal, phase change material (PCM) switching devices connected between a voltage supply terminal and a corresponding sub-block of integrated circuit logic. Each of the PCM switching devices further includes a PCM disposed in contact between a first terminal and a second terminal, a heating device disposed in contact between the second terminal and a third terminal, the heating device positioned proximate the PCM, and configured to switch the conductivity of a transformable portion of the PCM between a lower resistance crystalline state and a higher resistance amorphous state; and an insulating layer configured to electrically isolate the heater from said PCM material, and the heater from the first terminal. The third terminal of a first of the PCM switching devices is coupled to a set/reset switch, and the third terminal of the remaining PCM switching devices is coupled to the second terminal of an adjacent PCM switching device in a cascade configuration.
Abstract:
A memory circuit includes multiple word lines, multiple pairs of complementary bank bit lines, multiple block select lines, and multiple of block circuits. Each of the block circuits includes a local bit line; a first transistor having a control terminal connected to the local bit line, a first bias terminal connected to a first bank bit line of a given pair of bank bit lines, and a second bias terminal connecting to a first voltage source; a second transistor having a control terminal connected to a corresponding one of the block select lines, a first bias terminal connected to a second bank bit line of the given pair of bank bit lines, and a second bias terminal connected to the local bit line; and a plurality of memory cells connected to the local bit line and to respective word lines in the memory circuit. At least two block circuits are connected to a given pair of bank bit lines, the block circuits being configured such that a load on each bank bit line in the given pair of bank bit lines is substantially matched to one another.
Abstract:
A programmable link structure for use in three dimensional integration (3DI) semiconductor devices includes a via filled at least in part with a phase change material (PCM) and a heating device proximate the PCM. The heating device is configured to switch the conductivity of a transformable portion of the PCM between a lower resistance crystalline state and a higher resistance amorphous state. Thereby, the via defines a programmable link between an input connection located at one end thereof and an output connection located at another end thereof