摘要:
A method for forming a silicide layer on a substrate. A substrate with a silicon surface is provided. Nitrogen is incorporated into the silicon surface by a plasma treatment, to form a nitridized silicon surface. A metal layer is formed on the nitridized silicon surface. The substrate having the metal layer thereon is annealed to form a silicide layer between the metal layer and the substrate.
摘要:
A method of optimizing the formation of nickel silicide on regions of a MOSFET structure, has been developed. The method features formation of nickel silicide using an anneal procedure performed at a temperature below which nickel silicide instability and agglomeration occurs. A thin titanium interlayer is first formed on the MOSFET structure prior to nickel deposition, allowing an anneal procedure, performed after nickel deposition, to successfully form nickel silicide at a temperature of about 400° C. To obtain the desired conformality and thickness uniformity the thin titanium interlayer is formed via an atomic layer deposition procedure.
摘要:
Deep silicidation of a polysilicon gate electrode following high temperature annealing of a source/drain under the gate may damage the gate oxide. This damage is prevented by forming the gate electrode as two polysilicon layers separated by a chemical oxide. During annealing the chemical oxide prevents the grains of one polysilicon layer from merging with the grains of the other polysilicon layer. Thereafter, silicidation is substantially confined to the top polysilicon layer, the low resistance of which shunts the bottom polysilicon layer through the chemical oxide.
摘要:
A method of forming a silicided gate of a field effect transistor on a substrate having active regions is provided. The method includes the following steps: (a) forming a silicide in at least a first portion of a gate; (b) after step (a), depositing a metal over the active regions and said gate; and (c) annealing to cause the metal to react to form silicide in the active regions, wherein the thickness of said gate silicide is greater than the thickness of said silicide in said active regions.
摘要:
A process for reducing the thermal budget and enhancing stability in the thermal budget of a metal salicide process used in the formation of metal salicides on substrates, thus eliminating or reducing salicide spiking and junction leakage in microelectronic devices fabricated on the substrates. According to a typical embodiment, a substrate is cooled to a sub-processing temperature which is lower than the metal deposition processing temperature and the salicide-forming metal is deposited onto the reduced-temperature substrate.
摘要:
Alternate methods of forming low resistance “hatted” polysilicon gate elements are provided that increase the effective area in the polysilicon gate for silicide grain growth during silicide formation. The expanded top portion helps to prevent silicide agglomeration in the silicide regions, thereby maintaining or reducing electrode resistance, improving high-frequency performance, and reducing gate delay in sub micron FET ULSI devices, without increasing the underlying active channel length.
摘要:
A general process is described for filling a hole or trench at the surface of an integrated circuit without trapping voids within the filler material. A particular application is the filling of a trench with copper in order to form damascene wiring. First, a seed layer is deposited in the hole or trench by means of PVD. This is then followed by a sputter etching step which removes any overhang of this seed layer at the mouth of the trench or hole. A number of process variations are described including double etch/deposit steps, varying pressure and voltage in the same chamber to allow sputter etching and deposition to take place without breaking vacuum, and reduction of contact resistance between wiring levels by reducing via depth.
摘要:
A method for forming a via through a dielectric layer. There is first provided a substrate. There is then formed over the substrate a patterned conductor layer. There is then formed covering the patterned conductor layer a dielectric layer. There is then formed through the dielectric layer a via to access the patterned conductor layer, where the via is incompletely landed upon the patterned conductor layer. There is then purged the via while employing a vacuum purging method to form a purged via. There is then passivated the purged via and passivated the patterned conductor layer exposed within the purged via while employing a plasma passivation method to form a plasma passivated purged via and a plasma passivated patterned conductor layer. Finally, there is then formed into the plasma passivated purged via a conductor stud layer. Incident to employing the purging of the via to form the purged via and the plasma passivating of the purged via to form the plasma passivated purged via, the conductor stud layer when formed into the plasma passivated purged via is formed with attenuated contact resistance with respect to the plasma passivated patterned conductor layer.