Abstract:
Provided is a protective layer formed using at least one selected from the group consisting of a magnesium oxide and a magnesium salt and at least one selected from the group consisting of a lithium salt, a lithium oxide, a germanium oxide, and a germanium element. Provided is also a composition for forming a protective layer. When the composition is used for a protective layer of a gas discharge display device, an electrode or a dielectric can be protected from plasma ions generated by discharge of a mixed gas of Ne+Xe or He+Ne+Xe, a lower discharge voltage and a shorter discharge lag time can be obtained.
Abstract:
Disclosed is a method for fabricating a semiconductor device having at least one contact holes formed by employing a self-aligned contact (SAC) etching process. The contact holes are formed through the shortened number of sequential steps by using different process recipes. First, an anti-reflective coating (ARC) layer formed on a substrate structure prepared sequentially with a substrate, conductive structures, an etch stop layer and an inter-layer insulation layer is etched by employing an etch gas of CF4, O2, CO and Ar. Then, a portion of an inter-layer insulation layer is etched with use of an etch gas of CF4 and O2. The rest portion of the inter-layer insulation layer is subsequently etched by using a different etch gas of C4F6, CH2F2, O2 and Ar to thereby form at least one contact hole exposing the etch stop layer.
Abstract:
Disclosed is a method for fabricating a semiconductor device having at least one contact holes formed by employing a self-aligned contact (SAC) etching process. The contact holes are formed through the shortened number of sequential steps by using different process recipes. First, an anti-reflective coating (ARC) layer formed on a substrate structure prepared sequentially with a substrate, conductive structures, an etch stop layer and an inter-layer insulation layer is etched by employing an etch gas of CF4, O2, CO and Ar. Then, a portion of an inter-layer insulation layer is etched with use of an etch gas of CF4 and O2. The rest portion of the inter-layer insulation layer is subsequently etched by using a different etch gas of C4F6, CH2F2, O2 and Ar to thereby form at least one contact hole exposing the etch stop layer.
Abstract:
A method for fabricating a semiconductor device capable of preventing an inter-layer insulation layer from being damaged during a wet cleaning process. The method includes the steps of: forming a plurality of conductive structures on a substrate; forming an etch stop layer and a flowable insulation layer on the plurality of conductive structures subsequently; forming a photoresist pattern on the flowable insulation layer; forming a plurality of contact holes by etching the flowable insulation layer with use of the photoresist pattern as an etch mask, thereby exposing portions of the etch stop layer; forming at least one barrier layer on the contact holes; removing said at least one barrier layer and the etch stop layer disposed at each bottom portion of the contact holes to thereby expose the substrate; and cleaning the contact holes.
Abstract:
Disclosed is a method for fabricating a semiconductor device with an improved tolerance to a wet cleaning process. For a contact formation such as a gate structure, a bit line or a metal wire, a spin on glass (SOG) layer employed as an inter-layer insulation layer becomes tolerant to the wet cleaning process by allowing even a bottom part of the SOG layer to be densified during a curing process. The SOG layer is subjected to the curing process after a maximum densification thickness of the SOG layer is obtained through a partial removal of the initially formed SOG layer or through a multiple SOG layer each with the maximum densification thickness. After the SOG layer is cured, a self-aligned contact etching process is performed by using a photoresist pattern singly or together with a hard mask.
Abstract:
A content providing apparatus and method, and a content reproduction apparatus and method for accessing a content stream in a hybrid three-dimensional television (3DTV) are disclosed. The content providing apparatus may include a content stream generation unit to generate a first content stream corresponding to a reference image and a second content stream corresponding to a supplementary image, a descriptor generation unit to generate a descriptor associated with the first content stream and the second content stream, and a data transmission unit to transmit the first content stream, the second content stream, and the descriptor to a content reproduction apparatus.
Abstract:
An apparatus and a method for synchronizing left and right streams in a stationary/mobile hybrid 3DTV are disclosed. The apparatus according to an exemplary embodiment may synchronize content streams corresponding to left and right images using a timestamp pairing mode, a timestamp offset mode, and a network time protocol (NTP) synchronization mode.
Abstract:
Disclosed herein is a stable liquid formulation comprising human growth hormone; L-lysine, L-arginine or polyethylene glycol 300; and poly(oxyethylene) poly(oxypropylene) copolymer, polyethylene glycol-15 polyoxystearate or polyethylene glycol-35 castor oil.
Abstract:
In a method for fabricating a semiconductor device, a conductive layer is formed on a substrate, where the substrate has a bottom layer formed thereon. A magnetic tunnel junction layer is formed on the conductive layer. The magnetic tunnel junction layer is patterned using an etching gas containing oxygen. An insulating layer is formed by oxidizing the conductive layer exposed outside the patterned magnetic tunnel junction layer using the etching gas.
Abstract:
Provided are a protecting layer for a plasma display panel (PDP), a method of forming the same, and a PDP including the protecting layer. The protecting layer includes a magnesium oxide-containing layer having a surface to which magnesium oxide-containing particles having a magnesium vacancy-impurity center (VIC) are attached. The protecting layer is resistant to plasma ions and has excellent electron emission effects, and thus, a PDP including the protecting layer can be operated at low voltage with high discharge efficiency.