Abstract:
According to one embodiment, a magnetic memory is disclosed. The memory includes a conductive layer containing a first metal material, a stacked body above the conductive layer, and including a first magnetization film containing a second metal material, a second magnetization film, and a tunnel barrier layer between the first magnetization film and the second magnetization film, and an insulating layer on a side face of the stacked body, and containing an oxide of the first metal material. The first magnetization film and/or the second magnetization film includes a first region positioned in a central portion, and a second region positioned in an edge portion and containing As, P, Ge, Ga, Sb, In, N, Ar, He, F, Cl, Br, I, Si, B, C, O, Zr, Tb, S, Se, or Ti.
Abstract:
A method for fabricating a semiconductor device includes forming a plurality of layers which are stacked as a bottom layer, an MTJ layer, and a top layer, patterning the top layer and the MTJ layer using an etch mask pattern to form a top layer pattern and an MTJ pattern, forming a carbon spacer on the sidewalls of the MTJ pattern and the top layer pattern to protect the MTJ pattern and the top layer pattern, and patterning the bottom layer using the carbon spacer and the etch mask pattern as an etch mask to form a bottom layer pattern.
Abstract:
A method for manufacturing a semiconductor memory device includes sequentially depositing a bottom electrode layer, a magnetic tunnel junction (MTJ) layer, a first top electrode layer, a second top electrode layer and a mask layer, etching the mask layer and forming a mask pattern, etching the second top electrode layer and the first top electrode layer by using the mask pattern as an etch barrier, etching the MTJ layer by using the mask layer and the second top electrode layer as an etch barrier, and etching the bottom electrode layer by using the first top electrode layer as an etch barrier.
Abstract:
A protective layer of a plasma display panel includes smoky magnesium oxide, the smoky magnesium oxide having single crystal magnesium oxide with a plurality of cavities therein.
Abstract:
A method of fabricating a semiconductor device includes forming a plurality of pillars which are arranged on a substrate in a first direction and a second direction that intersects the first direction, thereby forming a resulting structure, forming a capping layer on the resulting structure including the pillars, removing the capping layer formed on the substrate between the pillars to expose the substrate between the pillars, thereby forming a resulting structure, forming a metal layer on the resulting structure, forming a silicide layer on the exposed substrate between the pillars by applying a first heat treatment to the metal layer, removing a non-reacted silicide layer, and forming an isolation trench in the substrate which is between rows of the pillars arranged in the first direction and is under the silicide layer to define bit lines which surround the pillars and are extended to the first direction.
Abstract:
A protecting layer is formed of a magnesium oxide and at least one additional component selected from the group consisting of a copper component selected from copper and a copper oxide, a nickel component selected from nickel and a nickel oxide, a cobalt component selected from cobalt and a cobalt oxide, and an iron component selected from iron and an iron oxide; a composite for forming the protecting layer; a method of forming the protecting layer; and a plasma display panel including the protecting layer. The protecting layer, which is used in a PDP, protects an electrode and a dielectric layer from a plasma ion generated by a gaseous mixture of Ne and Xe, or He, Ne, and Xe, and discharge delay time and dependency of the discharge delay time on temperature can be decreased and sputtering resistance can be increased.
Abstract:
A method for fabricating a semiconductor device includes forming electrode patterns over a substrate, wherein the electrode patterns include a hard mask, forming a passivation layer on the electrode patterns, forming an insulation layer on the passivation layer, filling a space between the electrode patterns, planarizing the insulation layer until shoulder portions of the hard mask are planarized, forming a mask pattern on a resultant structure, and etching a portion of the insulation layer to form a contact hole.
Abstract:
A method for fabricating a semiconductor device is capable of preventing a hard mask layer of a conductive structure from being damaged during a self-aligned contact etching process. The method includes the steps of: forming a plurality of conductive structures including a conductive layer and a hard mask layer on a substrate; sequentially forming a first nitride layer, an oxide layer, a second nitride layer, and an etch stop layer on the plurality of conductive structures; forming an inter-layer insulation layer on the etch stop layer; and performing a self-aligned contact (SAC) etching process selectively etching the inter-layer insulation layer, the etch stop layer, the second nitride layer and the oxide layer until the SAC etching process is stopped at the first nitride layer to thereby form a contact hole exposing the first nitride layer.
Abstract:
A method for forming a contact hole in a semiconductor device is provided. A method for forming a contact hole in a semiconductor device includes: forming an insulation layer over a bottom structure; forming a hard mask pattern over the insulation layer; etching a portion of the insulation layer using the hard mask pattern as an etch mask to form an opening; forming spacers over sidewalls of the hard mask pattern and the insulation layer patterned by the etching; etching a remaining portion of the insulation layer to form a contact hole exposing a portion of the bottom structure; and removing the spacers and the hard mask pattern.
Abstract:
Disclosed is a method for forming a polysilicon plug of a semiconductor device. The method comprises the steps of: forming a stacked pattern of a wordline and a hard mask film on a semiconductor substrate comprising a cell region and a peripheral circuit region; forming a spacer on a sidewall of the stacked pattern; forming an interlayer insulating film on the semiconductor substrate; polishing the interlayer insulating film via a CMP process using the hard mask film as a polishing barrier film; forming a barrier film on the semiconductor substrate including the interlayer insulating film; selectively etching the barrier film and the interlayer insulating film to form a landing plug contact hole; depositing a polysilicon film filling the landing plug contact hole on the semiconductor substrate; blanket-etching the polysilicon film using the barrier film as an etching barrier film; and polishing the polysilicon film and the barrier film using the hard mask film as a polishing barrier film to form a polysilicon plug.