Abstract:
In an optical distance measuring apparatus, a transmitter has a light-emitting device emitting an optical signal synchronized with a modulating signal having a predetermined repetition frequency, and a modulating signal generator outputting the modulating signal to the light-emitting device. A receiver has a photodetector receiving an optical beam reflected by an object to be measured and converting it to an electrical signal, a switch receiving the signal from the modulating signal generator and alternately choosing two channels for the electrical signal with a predetermined timing, and first and second storage sections storing electrical signals on the two channels. A signal processing section has a differential operation section performing a differential operation on electrical signals stored in the first and second storage sections, and a distance determining section determining a distance to the object on the basis of the result of the differential operation of the differential operation section.
Abstract:
A compound represented by the following general formula (1), or a salt or hydrate thereof: [Formula 1] wherein R1 represents a C1-C6 alkyl group or C2-C6 alkynyl group which may be substituted, or a phenyl group which may be substituted, R2 represents a hydrogen atom or a C1-C6 alkyl group, R3 represents methyl or ethyl group, R4 represents a C1-C6 alkyl group, R5 represents a hydrogen atom, provided that a compound wherein R1 is a C1-C6 alkyl group unsubstituted or substituted with a halogen atom and R2 is a hydrogen atom is excluded.
Abstract:
The optical object discriminating device includes a light projecting part which applies light, which is emitted from a semiconductor light emitting element, to a measuring object which is an object to be measured, and a light receiving part which receives reflected light reflected by the measuring object. Between the light receiving part and the measuring object is placed a polarization-state selector part which permits polarized light of a specified polarization direction to pass therethrough. A signal processing part processes a signal outputted by the light receiving part, and measures intensity of light of the polarization direction permitted by the polarization-state selector part to pass therethrough.
Abstract:
A component mounting apparatus includes a component feeder (20) that feeds a component (2) with its bump electrodes facing down, a mounting head (5) that mounts the component onto a substrate (3), a supporting base (8) that secures the substrate, and a positioning device (6, 7) that aligns the component with the substrate. The mounting head includes an ultrasonic vibration generator (24), an ultrasonic vibration propagation member (34, 38, 54) that conveys the ultrasonic vibration provided by the ultrasonic vibration generator to a working face (33, 41, 57) holding the component as vibration parallel thereto, a pressure loader (22, 23, 39, 55, 59) that applies a pressure load to the working face from a position immediately thereabove in the direction perpendicular thereto, and a heater (32, 47, 49, 50, 51, 52, 53) that heats the vicinity of the working face. Thereby, ultrasonic bonding is carried out with high reliability even if the component has a number of bump electrodes (2a) on its face.
Abstract:
Two different phase components obtained by splitting interference light of light from an object by a diffraction grating are guided to first and second PD's by a second optical system. A first signal is outputted from a first signal processing circuit section that receives light reception signal from first PD, and a second signal is outputted from a second signal processing circuit section that receives a light reception signal from the second PD. A third signal of an interference light signal whose noise component is removed is outputted by a third signal processing circuit section using the first signal and the second signal. Then, the frequency of the third signal is detected, and the movement velocity of the object is detected by a movement velocity detection section on the basis of the frequency.
Abstract:
The present invention provides a phthalazine compound as a therapeutic agent for erectile dysfunction represented by the following formula, a pharmacologically acceptable salt thereof or a hydrate thereof: wherein R1 and R2 are the same as or different from each other and represent a halogen atom, a C1 to C4 alkyl group which may be substituted with a halogen atom, a C1 to C4 alkoxy group which may be substituted with a halogen atom or a cyano group; X represents a cyano group, a nitro group, a halogen atom, a hydroxyimino group which may be substituted or a heteroaryl group which may be substituted; Y represents a heteroaryl group, an aryl group which may be substituted, an alkynyl group which may substituted, an alkenyl group, an alkyl group, an optionally substituted saturated or unsaturated 4- to 8-membered amine ring, and the cyclic amine compound is a monocyclic compound, bicyclic compound or a spiro compound; l is an integer of 1 to 3; provided that the case where l is 1 or 2, X is a cyano group, a nitro group or a chlorine atom, R1 is a chlorine atom, R2 is a methoxy group and Y is a 5- or 6-memberred amine ring substituted with a hydroxyl group is excluded.
Abstract:
An object of the present invention is to provide a bump-bonding heating apparatus, a bump bonding method and a bump forming apparatus which do not involve large-sized apparatus configuration and which are easy to handle, and a semiconductor wafer in which bumps are formed by using the bump bonding method. The bump-bonding heating apparatus has a wafer turning member, a turning unit and a wafer heating unit. The turning member is turned by the turning unit without turning the wafer heating unit, whereby a semiconductor wafer mounted on the turning member is turned. Like this, since the wafer heating unit is not turned, the apparatus configuration can be made compact. Since the turning member is turned directly by the turning unit, the turning angle of the semiconductor wafer can be implemented with higher precision as compared with the conventional gas floating type turning method.
Abstract:
The present invnetion provides a remedy for erectile dysfunction. The active ingredient thereof is a fused pyridazine compound represented by the following formula (I) or a pharmacologically acceptable salt thereof: (wherein the ring C represents a 5 or 6 membered ring optionally having hetero atom(s); n is an integer of from 1 to 4; R1 represents a hydrogen, a halogen, a cyano, etc.; A represents a hydrogen, a halogen, an optionally substituted amino, etc.; X represents a group represented by the formula —N═, etc.; and Y represents the formula —CO—, an optionally substituted amino, etc).
Abstract:
A fused pyridazine compound represented by the following general formula (I) or a pharmacologically acceptable salt thereof which exhibits an inhibitory activity against cyclic GMP phosphodiesterase (hereinafter referred to as "cGMP-PDE"). The compounds are useful as preventive and therapeutic agents for diseases for which a cGMP-PDE inhibiting action is efficacious, for example, ischemic heart diseases such as angina pectoris, myocardial infarct and chronic and acute cardiac failure, pulmonary hypertension, arteriosclerosis and bronchial asthma. ##STR1##
Abstract:
The present invention provides a nitrogenous heterocyclic compound represented by the following general formula (1) or a pharmacologically acceptable salt thereof which is useful for various ischemic heart diseases and the like: ##STR1## �in formula (1), ring A represents a benzene ring, a pyridine ring or a cyclohexane ring: ring B represents a pyridine ring, a pyrimidine ring or an imidazole ring, R.sup.1, R.sup.2, R.sup.3 R.sup.4, R.sup.5 and R.sup.6 are described herein.