Abstract:
Sails for sailboat wind propulsion comprising shape memory systems containing shape memory elements are described. The shape memory systems are arranged in correspondence to the sail battens, extending along them and operably connected to the sail opposite faces or directly to the battens so as to face the opposite faces of the sail. A control apparatus and method of said sails is also described.
Abstract:
An improved mercury-dispensing combination of materials is made up of a compound A including mercury and a second metal selected among titanium, zirconium and mixtures thereof and an alloy or an intermetallic compound B including copper and tin, said mercury-dispensing combination of materials further containing an amount of oxygen comprised between 0.03% and 0.48% with respect to the overall weight of the composition A+B. It is also possible to add a getter material C that includes metals such as titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof or their alloys with other metals such as nickel, iron, aluminum.
Abstract:
A composition of precursors for the release of vapors of alkali or alkali-earth metals is described. The composition has at least a compound of alkali or alkali-earth metal, at least a reducing agent and optionally an absorbing material, all in the form of powders, dispersed in a viscous matrix of hybrid organic-inorganic type. Dispensers for the release of these metals obtained through the composition and micro-electronic devices are also described.
Abstract:
A getter device containing a combination of getter materials is described. The device has a mixture of cerium oxide, copper oxide and metallic palladium for the removal of hydrogen and carbon monoxide in vacuum applications, particularly suitable to be used in vacuum insulation applications. This combination of getter materials is preferably added to powders of other getter materials such as alkali metals hydroxides and desiccant materials that are effective for maintaining the vacuum in thermal insulation systems.
Abstract:
Getter materials are described. The getter materials have non-evaporable getter alloys in their powder form having high gas sorption efficiency, particularly for hydrogen, carbon oxide and nitrogen, which after having lost their functionality in consequence of the exposure to reactive gases at a first temperature, can then be reactivated through a thermal treatment at a temperature between 400° C. and 600° C. The alloy powders have as compositional elements titanium and silicon and at least one additional metallic element selected among vanadium, iron and aluminum and have an atomic percentage composition of the elements which can vary within the following ranges: 1. Titanium from 60 to 85 atomic percentage; 2. Silicon from 1 to 20 atomic percentage; and 3. The sum of vanadium, iron and aluminum from 10 to 30 atomic percentage.
Abstract:
An improved carbon dioxide composite getter having a CO2-permeable envelope containing powders of two active materials (11, 11′, 11″, 12, 12′, 12″) and sealed systems employing such improved carbon dioxide composite getter are described.
Abstract:
A desiccant composition is described. The desiccant composition has a polymeric binder and a dispersion of powders of hygroscopic inorganic oxides as desiccant materials, in which the desiccant powders are finely dispersed in consequence of their surface-modification by fatty acid anions without affecting their moisture sorption performances.
Abstract:
The present invention refers to a composite getter for thin-film photovoltaic panels which is made with a polymer having low H2O transmission containing one or more alkaline earth metal oxide, to a photovoltaic panel containing such composite getter and to a method for the manufacturing of photovoltaic panels.
Abstract:
The present invention relates to a method for manufacturing H2O composite sorbers consisting of a polymeric matrix in which hygroscopic inorganic salts are dissolved, to composite sorbers consisting of hygroscopic inorganic salts dissolved in a polymeric matrix and their use for the removal of H2O from the housing of devices sensitive to the presence of H2O.
Abstract:
A temperature-sensitive label is described. The temperature-sensitive label has a temperature-sensitive system having a filiform shape memory member that has a first end portion having a terminal part fixedly secured to a first contact member, a second end portion having a terminal part restrained by a second contact member in a non-permanent way, and a central curved portion. The central curved portion is in the martensitic phase while the first and second portions are in the austenitic phase at a same environmental temperature above a critical threshold temperature to be monitored by the label such that in case of exposure to a temperature lower than the preset critical threshold temperature the end portions of the filiform shape member perform a phase transition, from austenitic phase to martensitic phase, which causes its irreversible disengagement from the restraint formed by the second contact member. The disengagement condition is optionally visible, for example, through a transparent window and/or monitored by an RFID system.