Abstract:
A digital camera module (200) includes a lens holder (20), a lens module (30) received in the lens holder, and an image sensor chip package (40) mounted to the lens holder. The lens module includes a lens barrel (301) movably engaged in the lens holder and at least one lens (302) received in the lens barrel. The image sensor chip package includes a base (401), an image sensor chip (402) mounted on the base, a transparent cover (405), and an adhesive (50) positioning the transparent cover with respect to the image sensor chip. The adhesive and the transparent cover cooperatively seal the image sensor chip therein.
Abstract:
An image sensor package includes an image sensor, a window, and a molding, where the molding includes a lens holder extension portion extending upwards from the window. The lens holder extension portion includes a female threaded aperture extending from the window such that the window is exposed through the aperture. A lens is supported in a threaded lens support. The threaded lens support is threaded into the aperture of the lens holder extension portion. The lens is readily adjusted relative to the image sensor by rotating the lens support.
Abstract:
A method is disclosed for creating a user interface for a spreadsheet-based software application. The method includes providing a spreadsheet having a plurality of standard cells displayable as standard spreadsheet cells, and a plurality of user interface cells displayable only as a window superimposed upon the standard spreadsheet cells; and providing at least one control function adapted to create the window superimposed upon the standard spreadsheet cells. Also disclosed is a user interface for a spreadsheet-based software application that includes a spreadsheet having a plurality of standard cells displayable as standard spreadsheet cells; and at least one custom view control function adapted to create a window superimposed upon the standard spreadsheet cells, the window displaying a subset of the standard cells. This invention substantially simplifies the task of programming a user interface using a spreadsheet environment. All standard spreadsheet functionality is available for use in the user interface creation process.
Abstract:
A digital still camera module includes an image sensor package (2) and a lens barrel (30) mounted on the image sensor package. The image sensor package includes a substrate (20), an image sensor chip (22), and a cover (28). The substrate defines a receiving chamber (203) therein. The image sensor chip mounted in the receiving chamber of the substrate. The cover, which is transparent and has a smaller profile than that of the substrate, is secured to the top portion of the substrate thereby sealing the receiving chamber. The top portion of the substrate has an uncovered section (29) at a periphery of the cover. The lens barrel includes at least one lens (31) received therein. The lens barrel is securely attached to the uncovered section of the top portion of the substrate.
Abstract:
An image sensor package includes a molding having a locking feature. The package further includes a snap lid having a tab, where the tab is attached to the locking feature of the molding. To form the image sensor package, a window is placed in a pocket of the molding. The snap lid is secured in place. Once secured, the snap lid presses against a peripheral region of an exterior surface of the window. The window is sandwiched between the molding and the snap lid and held in place.
Abstract:
A mounting for a package containing a semiconductor chip is disclosed, along with methods of making such a mounting. The mounting includes a substrate having a mounting surface with conductive traces thereon, and an aperture extending through the substrate. The package includes a base, such as a leadframe or a laminate sheet, and input/output terminals. A chip is on a first side of the base and is electrically connected (directly or indirectly) to the input/output terminals. A cap, which may be a molded encapsulant, is provided on the first side of the base over the chip. The package is mounted on the substrate so that the cap is in the aperture, and a peripheral portion of the first side of the base is over the mounting surface so as to support the package in the aperture and allow the input/output terminals of the package to be juxtaposed with to the circuit patterns of the mounting surface. Because the cap is within the aperture, a height of the package above the mounting surface is minimized.
Abstract:
An image sensor package includes an image sensor, a window, and a molding, where the molding includes a lens holder extension portion extending upwards from the window. The lens holder extension portion includes a female threaded aperture extending from the window such that the window is exposed through the aperture. A lens is supported in a threaded lens support. The threaded lens support is threaded into the aperture of the lens holder extension portion. The lens is readily adjusted relative to the image sensor by rotating the lens support.
Abstract:
Tools and methods for making molded an optical integrated circuit including one or more waveguides are disclosed. In one embodiment, a molding die is provided that includes a substrate that has a topographically patterned first surface. A conformal protective film is provided over the first surface of the substrate. The substrate may be formed of silicon or gallium arsenide, and may be patterned using conventional semiconductor patterning techniques, such as plasma etching. The protective film may be metal (e.g., nickel or titanium), diamond, or some other hard material. Typically, a plurality of such molding dies are formed from a wafer of the substrate material. The die is pressed into a moldable material, such as thermal plastic, to form the wave guide(s) of the optical integrated circuit. A plurality of the dies may be mounted around the curved surface of a heated roller, and a heated tape of the waveguide material may be fed under the roller in a mass production process. Alternatively, the die may be mounted in an injection molding cavity, and the IOC may be formed by an injection molding process.
Abstract:
An image sensor package includes an image sensor having an active area and bond pads on a front surface of the image sensor. A window is mounted to the image sensor by flip chip bumps formed between the bond pads of the image sensor and interior traces on an interior surface of the window. The window has an area less than an area of the front surface of the image sensor. A bead is formed between the window and the front surface of the image sensor thus forming a sealed cavity in which the active area is located. The bead has sides coplanar with sides of the image sensor such that the image sensor package is chip size.
Abstract:
A VCSEL package includes a substrate and a VCSEL device coupled to the substrate. The VCSEL device includes a first VCSEL and a calibration VCSEL. A sensor is coupled to the substrate such that a sensor area of the sensor is aligned with the calibration VCSEL. The sensor measures light from the calibration VCSEL to determine the power output of light emitted from the first VCSEL. The measured light is subsequently used to adjust the electrical power input to the VCSEL device to maintain the power output of the light emitted from the first VCSEL at a fixed or constant value.